Saturday, November 16, 2019

Optical telegraph https://www.wikiwand.com/en/Optical_telegraph Connected to: FranceParisTelecommunication From Wikipedia, the free encyclopedia A replica of one of Chappe's semaphore towers in Nalbach, Germany A replica of one of Chappe's semaphore towers in Nalbach, Germany Illustration of signaling by semaphore in 18th century France. The operators would move the semaphore arms to successive positions to spell out text messages in semaphore code, and the people in the next tower would read them. Illustration of signaling by semaphore in 18th century France. The operators would move the semaphore arms to successive positions to spell out text messages in semaphore code, and the people in the next tower would read them. An optical telegraph is a line of stations, typically towers, for the purpose of conveying textual information by means of visual signals. There are two main types of such systems; the semaphore telegraph which uses pivoted indicator arms and conveys information according to the direction the indicators point, and the shutter telegraph which uses panels that can be rotated to block or pass the light from the sky behind to convey information. The most widely used system was invented in 1792 in France by Claude Chappe, and was popular in the late eighteenth to early nineteenth centuries.[1][2][3] This system is often referred to as semaphore without qualification. Lines of relay towers with a semaphore rig at the top were built within line-of-sight of each other, at separations of 5–20 miles (8.0–32.2 km). Operators at each tower would watch the neighboring tower through a telescope, and when the semaphore arms began to move spelling out a message, they would pass the message on to the next tower. This system was much faster than post riders for conveying a message over long distances, and also had cheaper long-term operating costs, once constructed. Semaphore lines were a precursor of the electrical telegraph, which would replace them half a century later, and would also be cheaper, faster, and more private. The line-of-sight distance between relay stations was limited by geography and weather, and prevented the optical telegraph from crossing wide expanses of water, unless a convenient island could be used for a relay station. A modern derivative of the semaphore system is flag semaphore, the signalling with hand-held flags. Etymology and terminology The word semaphore was coined in 1801 BY THE FRENCH INVENTOR by the French inventor of the semaphore line itself, Claude Chappe.[4] He composed it from the Greek elements σῆμα (sêma, "sign"); and from φορός (phorós, "carrying"),[5] or φορά (phorá, "a carrying") from φέρειν (phérein, "to bear").[6] Chappe also coined the word tachygraph, meaning "fast writer".[7] However, the French Army preferred to call Chappe's semaphore system the telegraph, meaning "far writer", which was coined by French statesman André François Miot de Mélito.[8] THE WORD SEMAPHORIC WAS FIRST PRINTED IN ENGLISH The word semaphoric was first printed in English in 1808: "The newly constructed Semaphoric telegraphs", referring to the destruction of telegraphs in France.[9] The first use of the word semaphore in reference to English use was in 1816: "The improved Semaphore has been erected on the top of the Admiralty", referring to the installation of a simpler telegraph invented by Sir Home Popham.[citation needed] Semaphore telegraphs are also called, "Chappe telegraphs" or "Napoleonic semaphore". RBP Early designs EARLY DESIGNS Illustration showing Robert Hooke's proposed system. At top are various symbols that might be used; ABCE indicates the frame, and D the screen behind which each of the symbols are hidden when not in use. Illustration showing Robert Hooke's proposed system. At top are various symbols that might be used; ABCE indicates the frame, and D the screen behind which each of the symbols are hidden when not in use. Optical telegraphy dates from ancient times, in the form of hydraulic telegraphs, torches (as used by ancient cultures since the discovery of fire) and smoke signals. Modern design of semaphores was first foreseen by the British polymath Robert Hooke, who gave a vivid and comprehensive outline of visual telegraphy to the Royal Society in a 1684 submission in which he outlined many practical details. The system (which was motivated by military concerns, following the recent Battle of Vienna in 1683) was never put into practice.[10][11] Sir Richard Lovell Edgeworth's proposed optical telegraph for use in Ireland. The rotational position of each one of the four indicators represented a number 1-7 (0 being "rest"), forming a four-digit number. The number stood for a particular word in a codebook. Sir Richard Lovell Edgeworth's proposed optical telegraph for use in Ireland. The rotational position of each one of the four indicators represented a number 1-7 (0 being "rest"), forming a four-digit number. The number stood for a particular word in a codebook. One of the first experiments of optical signalling was carried out by the Anglo-Irish landowner and inventor, Sir Richard Lovell Edgeworth in 1767.[12] He placed a bet with his friend, the horse racing gambler Lord March, that he could transmit knowledge of the outcome of the race in just one hour. Using a network of signalling sections erected on high ground, the signal would be observed from one station to the next by means of a telescope.[13] The signal itself consisted of a large pointer that could be placed into eight possible positions in 45 degree increments. A series of two such signals gave a total 64 code elements and a third signal took it up to 512. He returned to his idea in 1795, after hearing of Chappe's system. France. 19th century demonstration of the semaphore 19th century demonstration of the semaphore Credit for the first successful optical telegraph goes to the French engineer Claude Chappe and his brothers in 1792, who succeeded in covering France with a network of 556 stations stretching a total distance of 4,800 kilometres (3,000 mi). Le système Chappe was used for military and national communications until the 1850s. Development in France During 1790–1795, at the height of the French Revolution, France needed a swift and reliable communication system to thwart the war efforts of its enemies. France was surrounded by the forces of Britain, the Netherlands, Prussia, Austria, and Spain, the cities of Marseille and Lyon were in revolt, and the British Fleet held Toulon. The only advantage France held was the lack of cooperation between the allied forces due to their inadequate lines of communication. In the summer of 1790, the Chappe brothers set about devising a system of communication that would allow the central government to receive intelligence and to transmit orders in the shortest possible time. Chappe considered many possible methods including audio and smoke. He even considered using electricity, but could not find insulation for the conductors that would withstand the high-voltage electrostatic sources available at the time.[14][15] Chappe settled on using an optical system and the first public demonstration occurred on 2 March 1791 between Brûlon and Parcé, a distance of 16 kilometres (9.9 mi). The system consisted of a modified pendulum clock at each end with dials marked with ten numerals. The hands of the clocks almost certainly moved much faster than a normal clock. The hands of both clocks were set in motion at the same time with a synchronisation signal. Further signals indicated the time at which the dial should be read. The numbers sent were then looked up in a codebook. In their preliminary experiments over a shorter distance, the Chappes had banged a pan for synchronisation. In the demonstration, they used black and white panels observed with a telescope. THE MESSAGE TO BE SENT The message to be sent was chosen by town officials at Brûlon and sent by René Chappe to Claude Chappe at Parcé who had no pre-knowledge of the message. The message read "si vous réussissez, vous serez bientôt couverts de gloire" (If you succeed, you will soon bask in glory). It was only later that Chappe realised that he could dispense with the clocks and the synchronisation system itself could be used to pass messages.[16] The Chappes carried out experiments during the next two years, and on two occasions their apparatus at Place de l'Étoile, Paris was destroyed by mobs who thought they were communicating with royalist forces. Their cause was assisted by Ignace Chappe being elected to the Legislative Assembly. In the summer of 1792 Claude was appointed Ingénieur-Télégraphiste and charged with establishing a line of stations between Paris and Lille, a distance of 230 kilometres (about 143 miles). It was used to carry dispatches for the war between France and Austria. In 1794, it brought news of a French capture of Condé-sur-l'Escaut from the Austrians less than an hour after it occurred.[17] The first symbol of a message to Lille would pass through 15 stations in only nine minutes. The speed of the line varied with the weather, but the line to Lille typically transferred 36 symbols, a complete message, in about 32 minutes. Another line of 50 stations was completed in 1798, covering 488 km between Paris and Strasbourg.[18] From 1803 on, the French also used the 3-arm Depillon semaphore at coastal locations to provide warning of British incursions.[1] Chappe system technical operation. The Chappe brothers determined by experiment that it was easier to see the angle of a rod than to see the presence or absence of a panel. Their semaphore was composed of two black movable wooden arms, connected by a cross bar; the positions of all three of these components together indicated an alphabetic letter. With counterweights (named forks) on the arms, the Chappe system was controlled by only two handles and was mechanically simple and reasonably robust. Each of the two 2-metre-long arms could display seven positions, and the 4.6-metre-long cross bar connecting the two arms could display four different angles, for a total of 196 symbols (7×7×4). Night operation with lamps on the arms was unsuccessful.[19] To speed up transmission and to provide some semblance of security, a code book was developed for use with semaphore lines. The Chappes' corporation used a code that took 92 of the basic symbols two at a time to yield 8,464 coded words and phrases. The revised Chappe system of 1795 provided not only a set of codes but also an operational protocol intended to maximize line throughput. Symbols were transmitted in cycles of "2 steps and 3 movements." Step 1, movement 1 (setup): The indicator arms were turned to align with the cross bar, forming a non-symbol. The crossbar was then moved into position for the current symbol. Step 1, movement 2 (transmission): The indicator arms were positioned for the current symbol. The operator then waited for the downline station to copy it. Step 2, movement 3 (completion): The cross bar was turned to a vertical or horizontal position, indicating the end of a cycle. In this manner, each symbol could propagate down the line as quickly as operators could successfully copy it, with acknowledgement and flow control built into the protocol. A symbol sent from Paris took 2 minutes to reach Lille through 22 stations and 9 minutes to reach Lyon through 50 stations. A rate of 2–3 symbols per minute was typical, with the higher figure being prone to errors. This corresponds to only 0.4–0.6 wpm, but with messages limited to those contained in the code book, this could be dramatically increased.[20][21] History. The Chappe Network in France The Chappe Network in France After Chappe's initial line (between Paris and Lille), the Paris to Strasbourg with 50 stations followed soon after (1798). Napoleon Bonaparte made full use of the military advantage of the telegraph by obtaining speedy information on enemy movements. In 1801 he had Abraham Chappe build an extra-large station for the purpose of transmitting across the English Channel in preparation for an invasion of Britain. A pair of such stations were built on a test line over a comparable distance. The line to Calais was extended to Boulogne in anticipation and a new design station was briefly in operation at Boulogne, but the invasion never happened. In 1812, Napoleon took up another design of Abraham Chappe for a mobile telegraph that could be taken with him on campaign. This was still in use in 1853 during the Crimean War.[22] The operational costs of the telegraph in the year 1799/1800 were 434,000 francs ($110 million in 2015 in labour costs[23]). In December 1800, Napoleon cut the budget of the telegraph system by 150,000 francs ($38 million in 2015)[23] leading to the Paris-Lyons line being temporarily closed. Chappe sought commercial uses of the system to make up the deficit, including use by industry, the financial sector, and newspapers. Only one proposal was immediately approved—the transmission of results from the state-run lottery. No non-government uses were approved. The lottery had been abused for years by fraudsters who knew the results selling tickets in provincial towns after the announcement in Paris, but before the news had reached those towns.[24] A Chappe semaphore tower near Saverne, France A Chappe semaphore tower near Saverne, France In 1819 Norwich Duff, a young British Naval officer, visiting Clermont-en-Argonne, walked up to the telegraph station there and engaged the signalman in conversation. Here is his note of the man's information:[25] The pay is twenty five sous per day and he [the signalman] is obliged to be there from day light till dark, at present from half past three till half past eight; there are only two of them and for every minute a signal is left without being answered they pay five sous: this is a part of the branch which communicates with Strasburg and a message arrives there from Paris in six minutes it is here in four.[26] — Norwich Duff The network was reserved for government use, but an early case of wire fraud occurred in 1834 when two bankers, François and Joseph Blanc, bribed the operators at a station near Tours on the line between Paris and Bordeaux to pass Paris stock exchange information to an accomplice in Bordeaux. He would know whether the Paris market was going up or down days before the information arrived in Bordeaux via the newspapers, after which Bordeaux was sure to follow. The message could not be inserted in the telegraph directly because it would have been detected. Instead, pre-arranged deliberate errors were introduced into existing messages which were visible to an observer at Bordeaux. Tours was chosen because it was a division station where messages were purged of errors by an inspector who was privy to the secret code used and unknown to the ordinary operators. The scheme would not work if the errors were inserted prior to Tours. The operators were told whether the market was going up or down by the colour of packages (either white or grey paper wrapping) sent by mail coach, thus avoiding any evidence of misdeed being put in writing. The scheme operated for two years until it was discovered in 1836.[27][28] The French optical system remained in use for many years after other countries had switched to the electrical telegraph. Partly, this was due to inertia; France had the most extensive optical system and hence the most difficult to replace. But there were also arguments put forward for the superiority of the optical system. One of these was that the optical system is not so vulnerable to saboteurs as an electrical system with many miles of unguarded wire. SAMUEL MORSE FAILED Samuel Morse failed to sell the electrical telegraph to the French government. Eventually the advantages of the electrical telegraph of improved privacy, and all-weather and nighttime operation won out.[29] A decision was made in 1846 to replace the optical telegraph with the Foy-Breguet electrical telegraph after a successful trial on the Rouen line. This system had a display which mimicked the look of the Chappe telegraph indicators to make it familiar to telegraph operators. Jules Guyot issued a dire warning of the consequences of what he considered to be a serious mistake. It took almost a decade before the optical telegraph was completely decommissioned. One of the last messages sent over the French semaphore was the report of the fall of Sebastopol in 1855.[30] RBP Sweden A replica of an optical telegraph in Stockholm, Sweden A replica of an optical telegraph in Stockholm, Sweden Sweden was the second country in the world, after France, to introduce an optical telegraph network.[31] Its network became the second most extensive after France.[32] The central station of the network was at the Katarina Church in Stockholm.[33] The system was nearly twice as fast as the French system.[citation needed] The improved speed was partly due to the Swedish control panel[34] and partly to the ease of transcribing the octal code (the French system was recorded as pictograms).[35] The system was used primarily for reporting the arrival of ships, but was also useful in wartime for observing enemy movements and attacks.[36] Development in Sweden. Inspired by news of the Chappe telegraph, the Swedish inventor Abraham Niclas Edelcrantz experimented with the optical telegraph in Sweden. He constructed a three-station experimental line in 1794 running from the royal castle in Stockholm, via Traneberg, to the grounds of Drottningholm Castle, a distance of 12 kilometres (7.5 mi). THE FIRST DEMOSTRATION WAS ON The first demonstration was on 1 November, when Edelcrantz sent a poem dedicated to the king on his fourteenth birthday. On 7 November the king brought Edelcrantz into his Council of Advisers with a view to building a telegraph throughout Sweden, Denmark, and Finland.[37] Edelcrantz system technical operation. After some initial experiments with Chappe-style indicator arms, Edelcrantz settled on a design with ten iron shutters. Nine of these represented a 3-digit octal number and the tenth, when closed, meant the code number should be preceded by "A". This gave 1,024 codepoints which were decoded to letters, words or phrases via a codebook.[38] THE TELEGRAPH HAS A SOFHISTICATED CONTROL PANEL The telegraph had a sophisticated control panel which allowed the next symbol to be prepared while waiting for the previous symbol to be repeated on the next station down the line. The control panel was connected by strings to the shutters. When ready to transmit, all the shutters were set at the same time with the press of a footpedal.[34] The shutters were painted matt black to avoid reflection from sunlight and the frame and arms supporting the shutters were painted white or red for best contrast.[39] Around 1809 Edelcrantz introduced an updated design. The frame around the shutters was dispensed with leaving a simpler, more visible, structure of just the arms with the indicator panels on the end of them. The "A" shutter was reduced to the same size as the other shutters and offset to one side to indicate which side was the most significant digit (whether the codepoint is read left-to-right or right-to-left is different for the two adjacent stations depending on which side they are on).[36] This was previously indicated with a stationary indicator fixed to the side of the frame, but without a frame was no longer possible.[40] The distance that a station could transmit depended on the size of the shutters and the power of the telescope being used to observe them. The smallest object visible to the human eye is one that subtends an angle of 40 seconds of arc, but Edelcrantz used a figure of 4 minutes of arc to account for atmospheric disturbances and imperfections of the telescope. On that basis, and with a 32X telescope, Edelcrantz specified shutter sizes ranging from 9 inches (22 cm) for a distance of 0.5 Swedish miles (5.3 km) to 54 inches (134 cm) for 3 Swedish miles (32 km).[41] These figures were for the original design with square shutters. The open design of 1809 had long oblong shutters which Edelcrantz thought was more visible.[42] Distances much further than these would require impractically high towers to overcome the curvature of the Earth as well as large shutters. Edelcrantz kept the distance between stations under 2 Swedish miles (21 km) except where large bodies of water made it unavoidable.[43] The Swedish telegraph was capable of being used at night with lamps. On smaller stations lamps were placed behind the shutters so that they became visible when the shutter was opened. For larger stations, this was impractical. Instead, a separate tin box matrix with glass windows was installed below the daytime shutters. The lamps inside the tin box could be uncovered by pulling strings in the same way the daytime shutters were operated. Windows on both sides of the box allowed the lamps to be seen by both the upstream and downstream adjacent stations. THE CODEPOINTS USED The codepoints used at night were the complements of the codepoints used during the day. This made the pattern of lamps in open shutters at night the same as the pattern of closed shutters in daytime.[44]. ---------- FIRST NETWORK (1795-1909) -------------- First network: 1795–1809 The first operational line, Stockholm to Vaxholm, went into service in January 1795. By 1797 there were also lines from Stockholm to Fredriksborg, and Grisslehamn via Signilsskär to Eckerö in Åland. A short line near Göteborg to Marstrand on the west coast was installed in 1799. During the War of the Second Coalition, Britain tried to enforce a blockade against France. Concerned at the effect on their own trade, Sweden joined the Second League of Armed Neutrality in 1800. Britain was expected to respond with an attack on one of the nordic countries in the league. To help guard against such an attack, the king ordered a telegraph link joining the systems of Sweden and Denmark. This was the firt international telegraph connection in the world. Edelcrantz made this link between Helsingborg in Sweden and Helsingør in Denmark, across the Öresund, the narrow strait separating the two countries. A new line along the coast from Kullaberg to Malmö, incorporating the Helsingborg link was planned in support and to provide signalling points to the Swedish fleet. Nelson's attack on the Danish fleet at Copenhagen in 1801 was reported over this link, but after Sweden failed to come to Denmark's aid it was not used again and only one station on the supporting line was ever built.[45] In 1808 the Royal Telegraph Institution was created and Edelcrantz was made director.[46] The Telegraph Institution was put under the jurisdiction of the military, initially as part of the Royal Engineering Corps.[47] A new code was introduced to replace the 1796 codebook with 5,120 possible codepoints with many new messages. The new codes included punishments for delinquent operators. These included an order to the operator to stand on one of the telegraph arms (code 001-721), and a message asking an adjacent station to confirm that they could see him do it (code 001-723).[48] By 1809, the network had 50 stations over 200 km of line employing 172 people.[36] In comparison, the French system in 1823 had 650 km of line and employed over three thousand people.[31] In 1808, the Finnish War broke out when Russia seized Finland, then part of Sweden. Åland was attacked by Russia and the telegraph stations destroyed. The Russians were expelled in a revolt, but attacked again in 1809. The station at Signilsskär found itself behind enemy lines, but continued to signal the position of Russian troops to the retreating Swedes. After Sweden ceded Finland in the Treaty of Fredrikshamn, the east coast telegraph stations were considered superfluous and put into storage. In 1810, the plans for a south coast line were revived but were scrapped in 1811 due to financial considerations. Also in 1811, a new line from Stockholm via Arholma to Söderarm lighthouse was proposed, but also never materialised.[49] For a while, the telegraph network in Sweden was almost non-existent, with only four telegraphists employed by 1810.[50] Rebuilding the network REBUILDING THE NETWORK. The post of Telegraph Inspector was created as early as 1811, but the telegraph in Sweden remained dormant until 1827 when new proposals were put forward. In 1834, the Telegraph Institution was moved to the Topographical Corps. The Corps head, Carl Fredrik Akrell, conducted comparisons of the Swedish shutter telegraph with more recent systems from other countries. Of particular interest was the semaphore system of Charles Pasley in England which had been on trial in Karlskrona. Tests were performed between Karlskrona and Drottningskär, and, in 1835, nighttime tests between Stockholm and Fredriksborg. Akrell concluded that the shutter telegraph was faster and easier to use, and was again adopted for fixed stations. However, Pasley's semaphore was cheaper and easier to construct, so was adopted for mobile stations. By 1836 the Swedish telegraph network had been fully restored.[47] The network continued to expand. In 1837, the line to Vaxholm was extended to Furusund. In 1838 the Stockholm-Dalarö-Sandhamn line was extended to Landsort. The last addition came in 1854 when the Furusund line was extended to Arholma and Söderarm.[47] The conversion to electrical telegraphy was slower and more difficult than in other countries. The many stretches of open ocean needing to be crossed on the Swedish archipelagos was a major obstacle. Akrell also raised similar concerns to those in France concerning potential sabotage and vandalism of electrical lines. Akrell first proposed an experimental electrical telegraph line in 1852. For many years the network consisted of a mix of optical and electrical lines. The last optical stations were not taken out of service until 1881, the last in operation in Europe. In some places, the heliograph replaced the optical telegraph rather than the electrical telegraph.[51]} United Kingdom. Diagram of UK Murray six-shutter system, with shutter 6 in the horizontal position, and shutters 1-5 vertical Diagram of UK Murray six-shutter system, with shutter 6 in the horizontal position, and shutters 1-5 vertical In Ireland, Richard Lovell Edgeworth returned to his earlier work in 1794, and proposed a telegraph there to warn against an anticipated French invasion; however, the proposal was not implemented. Lord George Murray, stimulated by reports of the Chappe semaphore, proposed a system of visual telegraphy to the British Admiralty in 1795.[3] He employed rectangular framework towers with six, five feet high octagonal shutters on horizontal axes that flipped between horizontal and vertical positions to signal. [52] The Rev. Mr Gamble also proposed two distinct five-element systems in 1795: one using five shutters, and one using five ten foot poles.[3] The British Admiralty accepted Murray's system in September 1795, and the first system was the 15 site chain from London to Deal.[53] Messages passed from London to Deal in about sixty seconds, and sixty-five sites were in use by 1808.[53] St. Albans High Street in 1807, showing the shutter telegraph on top of the city's Clock Tower. It was on the London to Great Yarmouth line[54] St. Albans High Street in 1807, showing the shutter telegraph on top of the city's Clock Tower. It was on the London to Great Yarmouth line[54] Chains of Murray's shutter telegraph stations were built along the following routes: London—Deal and Sheerness, London—Great Yarmouth and London—Portsmouth and Plymouth.[54] The shutter stations were temporary wooden huts, and at the conclusion of the Napoleonic wars they were no longer necessary, and were closed down by the Admiralty in March 1816.[55] Following the Battle of Trafalgar, the news was transmitted to London by frigate to Falmouth, from where the captain brought the dispatches to London by coach along what became known as the Trafalgar Way; the journey took 38 hours. This delay prompted the Admiralty to investigate further. A replacement semaphore system was sought, and of the many ideas and devices put forward the Admiralty chose the simpler semaphore system invented by Sir Home Popham.[2][3] A Popham semaphore was a single fixed vertical 30 foot pole, with two movable 8 foot arms attached to the pole by horizontal pivots at their ends, one arm at the top of the pole, and the other arm at the middle of the pole.[1][2] The signals of the Popham semaphore were found to be much more visible than those of the Murray shutter telegraph.[1] Popham's 2-arm semaphore was modeled after the 3-arm Depillon French semaphore.[1] An experimental semaphore line between the Admiralty and Chatham was installed in July 1816, and its success helped to confirm the choice.[55] Subsequently, the Admiralty decided to establish a permanent link to Portsmouth and built a chain of semaphore stations. Work started in December 1820[55] with Popham's equipment replaced with another two-arm system invented by Charles Pasley. Each of the arms of Pasley's system could take on one of eight positions and thus had more codepoints than Popham's.[56] In good conditions messages were sent from London to Portsmouth in less than eight minutes.[57] The line was operational from 1822 until 1847, when the railway and electric telegraph provided a better means of communication. The semaphore line did not use the same locations as the shutter chain, but followed almost the same route with 15 stations - Admiralty (London), Chelsea Royal Hospital, Putney Heath, Coombe Warren, Coopers Hill, Chatley Heath, Pewley Hill, Bannicle Hill, Haste Hill (Haslemere), Holder Hill, (Midhurst), Beacon Hill, Compton Down, Camp Down, Lumps Fort (Southsea), and Portsmouth Dockyard. The semaphore tower at Chatley Heath, which replaced the Netley Heath station of the shutter telegraph, has been restored by Surrey County Council and is open to the public. The Board of the Port of Liverpool obtained a Private Act of Parliament to construct a chain of Popham optical semaphore stations from Liverpool—Holyhead in 1825.[58] The system was designed and part-owned by Barnard L. Watson, a reserve marine officer and came into service in 1827. The line is possibly the only example of an optical telegraph built entirely for commercial purposes. It was used so that observers at Holyhead could report incoming ships to the Port of Liverpool and trading could begin in the cargo being carried before the ship docked. The line was kept in operation until 1860 when a railway line and associated electrical telegraph made it redundant.[59][60]:181–183 Many of the prominences on which the towers were built ('telegraph hills') are known as Telegraph Hill to this day. Other countries Optical telegraph in the harbour of Bremerhaven, Germany Optical telegraph in the harbour of Bremerhaven, Germany Once it had proved its success, the optical telegraph was imitated in many other countries, especially after it was used by Napoleon to coordinate his empire and army. In most of these countries, the postal authorities operated the semaphore lines. Many national services adopted signaling systems different from the Chappe system. For example, the UK and Sweden adopted systems of shuttered panels (in contradiction to the Chappe brothers' contention that angled rods are more visible). In some cases, new systems were adopted because they were thought to be improvements. But many countries pursued their own, often inferior, designs for reasons of national pride or not wanting to copy from rivals and enemies.[61] British empire In Ireland R.L. Edgeworth was to develop an optical telegraph based on a triangle pointer, measuring up to 16 feet in height. Following a number of years promoting his system, he was to get admiralty approval and engaged in its construction during 1803-4. The completed system ran from Dublin to Galway and was to act as a rapid warning system in case of French invasion of the west coast of Ireland. Despite its success in operation, the receding threat of French invasion was to see the system disestablished in 1804.[62] In Canada, Prince Edward, Duke of Kent established the first semaphore line in North America. In operation by 1800, it ran between the city of Halifax and the town of Annapolis in Nova Scotia, and across the Bay of Fundy to Saint John and Fredericton in New Brunswick. In addition to providing information on approaching ships, the Duke used the system to relay military commands, especially as they related to troop discipline. The Duke had envisioned the line reaching as far as the British garrison at Quebec City; however, the many hills and coastal fog meant the towers needed to be placed relatively close together to ensure visibility. The required labour to build and continually man so many stations taxed the already stretched-thin British military and there is doubt the New Brunswick line was ever in operation. With the exception of the towers around Halifax harbour, the system was abandoned shortly after the Duke's departure in August 1800.[63][64] Ta' Kenuna Tower, a semaphore tower in Nadur, Gozo, Malta, built by the British in 1848 Ta' Kenuna Tower, a semaphore tower in Nadur, Gozo, Malta, built by the British in 1848 The British military authorities began to consider installing a semaphore line in Malta in the early 1840s. Initially, it was planned that semaphore stations be established on the bell towers and domes of the island's churches, but the religious authorities rejected the proposal. Due to this, in 1848 new semaphore towers were constructed at Għargħur and Għaxaq on the main island, and another was built at Ta' Kenuna on Gozo. Further stations were established at the Governor's Palace, Selmun Palace and the Giordan Lighthouse. Each station was manned by the Royal Engineers.[65] The Semaphore Tower at Khatirbazar, Andul in Howrah district of West Bengal The Semaphore Tower at Khatirbazar, Andul in Howrah district of West Bengal In India, semaphore towers were introduced in 1810. A series of towers were built between Fort William, Kolkata to Chunar Fort near Varanasi.The towers in the plains were 75–80 ft (23–24 m) tall and those in the hills were 40–50 ft (12–15 m) tall, and were built at an interval of about 13 km (8.1 mi).[66] The last stationary semaphore link in regular service was in Sweden, connecting an island with a mainland telegraph line. It went out of service in 1880. Iberia In Portugal, the British forces fighting Napoleon in Portugal soon found that the Portuguese Army had already a very capable semaphore terrestrial system working since 1806, giving the Duke of Wellington a decisive advantage in intelligence. The innovative Portuguese telegraphs, designed by Francisco Ciera, a mathematician, were of 3 types: 3 shutters, 3 balls and 1 pointer/moveable arm (the first for longer distances, the other two for short) and with the advantage of all having only 6 significant positions. He also wrote the code book "Táboas Telegráphicas", with 1554 entries from 1 to 6666 (1 to 6, 11 to 16,... 61 to 66, 111 to 116,... etc.), the same for the 3 systems. Since early 1810 the network was operated by "Corpo Telegráfico", the first Portuguese military Signal Corps. In Spain, the engineer Agustín de Betancourt developed his own system which was adopted by that state. This system was considered by many experts in Europe better than Chappe's, even in France.[citation needed] Spain was spanned by an extensive semaphore telegraph network in the 1840s and 1850s.[67] The three main semaphore lines radiated from Madrid.[67][68] The first ran north to Irun on the Atlantic coast at the French border. The second ran west to the Mediterranean, then north along the coast through Barcelona to the French border. The third ran south to Cadiz on the Atlantic coast. These lines served many other Spanish cities, including: Aranjuez, Badajoz, Burgos, Castellon, Ciudad Real, Córdoba, Cuenca, Gerona, Pamplona, San Sebastian, Seville, Tarancon, Taragona, Toledo, Valladolid, Valencia, Vitoria and Zaragoza.[68] Others In 1801, the Danish post office installed a semaphore line across the Great Belt strait, Storebæltstelegrafen, between islands Funen and Zealand with stations at Nyborg on Funen, on the small island Sprogø in the middle of the strait, and at Korsør on Zealand. It was in use until 1865.[69] Main article: Prussian semaphore system In the Kingdom of Prussia, Frederick William III ordered the construction of an experimental line in 1819, but due to the procrastination of defence minister Karl von Hake, nothing happened until 1830 when a short three-station line between Berlin and Potsdam was built. The design was based on the Swedish telegraph with the number of shutters increased to twelve.[70] Postrat Carl Pistor proposed instead a semaphore system based on Watson's design in England. An operational line of this design running Berlin-Magdeburg-Dortmund-Köln-Bonn-Koblenz was completed in 1833. The line employed about 200 people, comparable to Sweden, but no network ever developed and no more official lines were built. The line was decommissioned in 1849 in favour of an electrical line.[71] Although there were no more government sponsored official lines, there was some private enterprise. Johann Ludwig Schmidt opened a commercial line from Hamburg to Cuxhaven in 1837. In 1847, Schmidt opened a second line from Bremen to Bremerhaven. These lines were used for reporting the arrival of commercial ships. The two lines were later linked with three additional stations to create possibly the only private telegraph network in the optical telegraph era.[72] The telegraph inspector for this network was Friedrich Clemens Gerke, who would later move to the Hamburg-Cuxhaven electrical telegraph line and develop what became the International Morse Code.[73] The Hamburg line went out of use in 1850, and the Bremen line in 1852.[74] Former optical telegraph tower on the Winter Palace in Saint Petersburg, Russia Former optical telegraph tower on the Winter Palace in Saint Petersburg, Russia In Russia, Tsar Nicolas I inaugurated a line between Moscow and Warsaw of 1,200 kilometres (750 mi) length in 1833; it needed 220 stations manned by 1,320 operators. The stations were noted to be unused and decaying in 1859, so the line was probably abandoned long before this.[35] In the United States, the first optical telegraph was built by Jonathan Grout in 1804 but ceased operation in 1807. This 104-kilometre (65 mi) line between Martha's Vineyard with Boston transmitted shipping news. An optical telegraph system linking Philadelphia and the mouth of the Delaware Bay was in place by 1809 and had a similar purpose; a second line to New York City was operational by 1834, when its Philadelphia terminus was moved to the tower of the Merchants Exchange. One of the principal hills in San Francisco, California is also named "Telegraph Hill", after the semaphore telegraph which was established there in 1849 to signal the arrival of ships into San Francisco Bay. First data networks The optical telegraphs put in place at the turn of the 18th/19th centuries were the first examples of data networks.[75] Chappe and Edelcrantz independently invented many features that are now commonplace in modern networks, but were then revolutionary and essential to the smooth running of the systems. These features included control characters, routing, error control, flow control, message priority and symbol rate control. Edelcrantz documented the meaning and usage of all his control codes from the start in 1794. The details of the early Chappe system is not known precisely; the first operating instructions to survive date to 1809 and the French system is not as fully explained as the Swedish.[76] Some of the features of these systems are considered advanced in modern practice and have been recently reinvented. An example of this is the error control codepoint 707 in the Edelcrantz code. This was used to request the repeat of a specified recent symbol. The 707 was followed by two symbols identifying the row and column in the current page of the logbook that it was required to repeat. This is an example of a selective repeat and is more efficient than the simple go back n strategy used on many modern networks.[77] This was a later addition, both Endelcantz (codepoint 272), and Chappe (codepoint 2H6)[note 1] initially used only a simple "erase last character" for error control, taken directly from Hooke's 1684 proposal.[78] Routing in the French system was almost permanently fixed; only Paris and the station at the remote end of a line was allowed to initiate a message. The early Swedish system was more flexible, having the ability to set up message connections between arbitrary stations. Similar to modern networks, the initialisation request contained the identification of the requesting and target station. The request was acknowledged by the target station by sending the complement of the code received. This protocol is unique with no modern equivalent.[77] This facility was removed from the codebook in the revision of 1808. After this, only Stockholm would normally initiate messages with other stations waiting to be polled.[77] The Prussian system required the Coblenz station (at the end of the line) to send a "no news" message (or a real message if there was one pending) back to Berlin on the hour, every hour. Intermediate stations could only pass messages by replacing the "no news" message with their traffic. On arrival in Berlin, the "no news" message was returned to Coblenz with the same procedure. This can be considered an early example of a token ring system. This arrangement required accurate clock synchronisation at all the stations. A synchronisation signal was sent out from Berlin for this purpose every three days.[79] Another feature that would be considered advanced in a modern electronic system is the dynamic changing of transmission rates. Edelcrantz had codepoints for faster (770) and slower (077). Chappe also had this feature. In popular culture A cartoon strip of "Monsieur Pencil" (1831) by Rodolphe Töpffer A cartoon strip of "Monsieur Pencil" (1831) by Rodolphe Töpffer By the mid 19th century, the optical telegraph was well known enough to be referenced in popular works without special explanation. The Chappe telegraph appeared in contemporary fiction and comic strips. In "Mister Pencil" (1831), comic strip by Rodolphe Töpffer, a dog fallen on a Chappe telegraph's arm and its master attempting to help provoke an international crisis by involuntarily transmitting disturbing messages. In "Lucien Leuwen" (1834), Stendhal pictures a power struggle between Lucien Leuwen and the prefect M. de Séranville with the telegraph's director M. Lamorte. In Chapter 60 ("The Telegraph") of Alexandre Dumas' The Count of Monte Cristo (1844), the title character describes with fascination the semaphore line's moving arms. "I had at times seen rise at the end of a road, on a hillock and in the bright light of the sun, these black folding arms looking like the legs of an immense beetle."[80] He later bribes a semaphore operator to relay a false message in order to manipulate the French financial market. Dumas also describes in details the functioning of a Chappe telegraph line. In Hector Malot's novel Romain Kalbris (1869), one of the characters, a girl named Dielette, describes her home in Paris as "...next to a church near which there was a clock tower. On top of the tower there were two large black arms, moving all day this way and that. [I was told later] that this was Saint-Eustache church and that these large black arms were a telegraph."[81] ---------- ----------- EL SEMAFORO, 1l Electrico o ELECTRONICO. 2. Activado por: ELECTRICIDAD, -POR LA LUZ ELECTRICA- es el sistema SEMIOTICO O SEMIOLOGICO mas importante INVENTADO EN 1.TODA LA HISTORIA DE LA HUMANIDAD, 2. PARA PREVENIR MUERTES, MUTILACIONES, AMPUGACIONES, LUTO, EN CALLES Y CARRETERAS... de todo el mundo... 3. DISENADO PARA RESOLVER UN PROBLEMA : 3.1 PRACTICO. 3.2. DE LA VIDA COTIDIANA. 3.3. DE CUALQUIER SER HUMANO, EN LA CALLE, FUERA DE SU CASA U HOGAR... 3.3.1. PEATONES, PEATONAS.... DE TODAS LAS EDADES... DE TODAS LAS CLASES SOCIALES 3.3.2. CICLISTAS. DE TODAS LAS EDADES. DE TODAS LAS CLASES SOCIALES DE TODAS LAS RELIGIONES DE TODOS LOS PARTIDOS POLITICOS... 3.2.3. CICLISTAS... 3.2.4. CHOFERES, CONDUCTORAS de VEHICULOS CON O SIN LICENCIA DE CONDUCIR.... EN VEHICULOS DE 4 RUEDAS, PUBLICOS. PRIVADOS.... 3.2.5. CHOFERES O CONDUCTORES DE VEHICULOS DE MOTOR DE 8 RUEDAS... PUBLICOS, PRIVADOS DE CARGA. DE COMERCIO. DE AGRICULTURA. DE GANADERIA. DE AGROINDUSTRIA. DE IMPORTACION. DE EXPORTACION. DE INDUSTRIA. DEL GOBIERNO. DEL ESTADO DOMINICANO. DE LA ADMINISTRACION PUBLICA PROFESIONAL DEL ESTADO DOMINICANO. DE LA BUROCRACIA PROFESIONAL DOMINICANA DE LAS ORGANIZACIONES DE LA SOCIEDAD CIVIL. DE LAS MYPIMES DOMINICANAS. DE LAS GRANDES EMPRESAS E INDUSTRIAS DOMINICANAS... 3.2.7. CHOFERES Y CONDUCTORES DE VEHICULOS DE MOTOR DE 12 RUEDAS... 3.2.8 CHOFERES Y CONDUCTORAS DE VEHICULOS DE MOTOR DE 16 RUEDAS... 3.2. 9 CHOFERES Y CONDUCTORAS DE VEHICULOS DE MOTOR DE 20 RUEDAS... 3.2.10. CHOFERES Y CONDUCTORAS DE VEHICULOS DE MOTOR DE 24 RUEDAS.... 3.2.11. CHOFERES Y CONDUCTORAS DE DE VEHICUOS DE MOTOR DE 30 RUEDAS... 3.2.12. CHOFERES Y CONDUCTORAS DE VEHICULOS DE MOTOR: TERRESTRES DE 36 RUEDAS O MAS... 1. EL SEMAFORO NO TIENE: PREJUICIOS. 2. EL SEMAFORNO, NO : DISCRIMINA... ESTA EN LA ESQUINA CON UNA SOLA FUNCION: GERENCIAL, ADMINISTRATIVA Y MEDICO-PREVENTIVA.... 1. Rara salvar la VIDA ....HUMANA... 2.. NO LOS VEHICULOS... 3. NO LAS INVERSIONES EN : VEHICULOS DE MOTOR.... 4.A LAS PERSONAS HUMANAS.... 4.1 QUE CONDUCEN VEHICULOS DE MOTOR. 4.2. QUE VIAJAN EN CALIDAD O STATUS DE: PASAJEROS, PASAJERAS... 5. Pero no se creo por UN INTENTO DE NINGUN TEORICO, de hacerse : 1. FAMOSO . 2. RICO... 6. Sino para revolver UN PROBLEMA PRACTICO, DE LA CIUDAD.... POR QUE SE TUVO QUE INVENTAR: EL SEMAFORO ELECTRICO, PARA QUE LAS CIUDADES, NO SE VOLVIERAN UNA CARNICERIA, DE MIEMBROS Y CUERPOS HUMANOS, APLASTADOS, DESFIGURADOS, -JODIDOS, mutilados, amputados- 1. PARA SIEMPRE: 2. CON UNA DISCAPACIDAD o diversidad funcional: no congenita? 1. SE HABIA INVENTADO UNA MAQUINA llamada : AUTOMOVIL...unos ANOS, ANTES... ----------- Flag semaphore originated in 1866 as a handheld version of the optical telegraph system of Home Riggs Popham used on land, and its later improvement by Charles Pasley. The land system consisted of lines of fixed stations (substantial buildings) with two large, moveable arms pivoted on an upright membet. Flag semaphore - Wikipedia https://en.wikipedia.org › wiki › Flag_semaphore -------- People also ask. When was semaphore invented? What was semaphore used for? What are the semaphore signals? Why are semaphore flags used? ------ Semaphore Flag History | Flagpoles Etc. https://flagpolesetc.com › blog › semaphore-flag-history Mar 2, 2017 - Semaphore flag is the term given to a method of communicating with flags. The person holding the flags position them in specific positions to ... ----- Semaphore | communications | Britannica https://www.britannica.com › technology › semaphore Semaphore, method of visual signaling, usually by means of flags or lights. Before ... See Article History ... semaphore flag signals Encyclopædia Britannica, Inc. -------- Optical telegraph - Wikipedia https://en.wikipedia.org › wiki › Optical_telegraph An optical telegraph is a line of stations, typically towers, for the purpose of conveying textual information by means of visual signals. There are two main types of such systems; the semaphore telegraph which ... 3.1 Development in France; 3.2 Chappe system technical operation; 3.3 History. 4 Sweden. 4.1 Development in ... ‎France · ‎Sweden · ‎United Kingdom · ‎Other countries. ---- Flag semaphore - Wikipedia https://en.wikipedia.org › wiki › Flag_semaphore Jump to Origin - Flag semaphore originated in 1866 as a handheld version of the optical telegraph system of Home Riggs Popham used on land, and its later improvement by Charles Pasley. The land system consisted of lines of fixed stations (substantial buildings) with two large, moveable arms pivoted on an upright membet. ‎Contemporary semaphore ... · ‎Japanese semaphore · ‎Practical use in ... ----- A Brief History of Semaphore / Signal It / Dancing the Key ... artsonline.tki.org.nz › ... › Dancing the Key Competencies › Signal It A Brief History of Semaphore ... Semaphore is a visual method of communication that involves signalling the alphabet or numbers by the handholding of 2 flags ... ---- How Napoleon's semaphore telegraph changed the world - BBC https://www.bbc.com › news › magazine-22909590 Jun 17, 2013 - Napoleonic semaphore was the world's first telegraph network, carrying messages across 18th Century ... Share this story About sharing. ----- How the Telegraph Went From Semaphore to Communication ... https://www.smithsonianmag.com › arts-culture › how-the-telegraph-went-... Oct 11, 2013 - The Chappe semaphore telegraph consisted of a series of towers topped with three ... the hard work of cranking their own semaphore panels into place to relay the message further down the line. .... ----- Famous Scientists History. Images for Semaphore. History Guided Search Filters exeter hotelflagmorse codealphabetcommunicationhistoricalmountinstructionsignalpositionstationprintabletelegraphsymbolpaintinggalleryclaude chappemaritime flaghydraulic maritimesa photo ------- The STORY of the SEMAPHORE https://www.tandfonline.com › doi › pdf by HP Mead - ‎1933 V. ARious factors seem to contribute to the need of a record of the history of the British semaphore. In the first place, questions are continually arising as to who ... --------- The Origin of the Railway Semaphore - Personal Web Sites... https://mysite.du.edu › ~jcalvert › railway › semaphor › semhist Apr 15, 2000 - To appreciate the origin of the railway semaphore, it is necessary to say something about optical telegraphs. The invention of good telescopes ... Searches related to Semaphore. History flag semaphore semaphore communication semaphore flags translator semaphore signal navy semaphore flags semaphore numbers semaphore flags for sale semaphore cipher ---------- POR QUE HUBO QUE INVENTAR: EL SEMAFORO ELECTRICO, EN LAS CIUDADES NORTEAMERICANAS, EN 1914? ------------- Por un LOCO, llamado HENRY FORD, UN LOCO INACEPTADO, POR LA COMUNIDAD... Por eso toda la gente BIENPENSANTE, RACIONAL, de su epoca: LO OBLIGARON A MUDARSE TRES VECES DE COMUNIDAD, llevandolo como un Cristo al AYUNTAMIENTO A LA MUNICIPALIDAD AL MUNICIPAL HALL... 1. PRIMERO CON LA DENUNCIA, de que ese hombre LOCO, estaba inventando una: MAQUINA QUE HACIA RUIDO, mucho RUIDO y le causaba STRESS, al ganado y a los pollos, EN COMUNIDADES RURALES, donde la gente vivia EN SILENCIO de la : avicultura y de la genaderia... SE TUVO QUE MUDAR ESE LOCO: INVENTOR... Cuando el proyecto de INGENIERIA AUTOMOTRIZ, iba mas avanzado... EN LA SEGUNDA COMUNIDAD... LA COMUNIDAD ENTERA SE REUNIO: VOLVIERON A DENUNCIARLO y a llevarlo como un Cristo, al AYUNTAMIENTO... Porque decian, SOBRE TODO LOS HOMBRES DE LA COMUNIDAD, que ese loco, habia hecho UNA MAQUINA, que ponia la vida de las PERSONAS EN PELIGRO -en un mundo sin carreteras, ni avenidas- SALIA DE CUALQUIER MAIZAL, con maquina INFERNAL, poniendo en peligro a todas las PERSONAS Y FAMILIAS que encontraba a su paso... SE TUVO QUE MUDAR... 1. LA INCOMPRENSION es la reaccion natural a todos LOS INVENTOS, en la Historia de la Humanidad.... 2. PERO HENRY FORD, NO SE ACORDO: 2.1. NO solo invento EL AUTOMIVIL. 2.2. SINO ALGO MAS IMPORTANTE, PARA LA INDUSTRIALIZACION EN TODO EL PLANETA TIERRA: 1. LA CADENA DE MONTAJE INDUSTRIAL. 2.LA CADENA DE PRODUCCION INDUSTRIAL, SEMI-AUTOMATIZADA. LA PROLIFERACION DE AUTOMOVILES, MANEJADOS POR CAMPESINOS Y POR CAMPESINAS ANALFABETAS, en los ESTADOS UNIDOS DE AMERICA, fue el principal LEIVMOTIV, LA MUSA, del inventor DEL SEMAFORO.... UNO DE LOS PRIMEROS INVENTOS DE LA INDUSTRIA TELECOMUNICACIONAL, de uso o aplicaciones MASIVAS, en todas las ciudades de los ESTADOS UNIDOS DE AMERICA, desde el ano : 1914. Es un invento FACIL DE COMPRENDER: Tres luces. LA ROJA. Indica, denota: PELIGRO. PARE. LA AMARILLA. Precaucion, MEJOR DETENGASE. LA VERDE: VIA FRANCA, PASE.... NO HABIA QUE SABER LEER NI ESCRIBIR TODOS ESTABAN: TELECOMUNICADOS. COMUNICADOS EN LA DISTANCIA. Ahora, en 2019, la Organizacion Mundial de la Salud, indica que a nivel mundial, en los 5 continentes; EL PROBLEMA PRIORITARIO DE SALUD PUBLICA SON LAS MUERTES : 1. EN CARRETERAS. 2. LOS ACCIDENTES DE TRANSITO. Pero los que mueren hasta sumar : 3. 3 millones de seres humanos... NO SON ADULTOS, NO SON ADULTOS-CONTEMPORANEOS, NO SON ENVEJECIENTES, NO SON ANCIANOS... EN TALES ACCIDENTES FATALES, SINO: NINOS Y NINAS DE : 5 A 18 ANOS DE EDAD... CONSTITUYENDOSE EN TALES TIPOS DE MUERTES, en una amenaza para LA EXISTENCIA DE LA NINEZ, en el mundo... que mata cada ano... MAS NINOS Y NINAS QUE TODAS LAS GUERRAS, EN EL PLANETA... MAS NINOS Y NINAS QUE EL HAMBRE... MAS NINOS Y NINAS QUE LA DESNUTRICION INFANTIL.... MAS NINOS Y NINAS QUE LA DIARREA, LA DESINTERIA, LA MALARIA, JUNTAS... El segundo grupo de victimas fatales, de los ACCIDENTES DE CARRETERA O DE TRANSITO, son las personas JOVENES -DE MENOS DE 30 ANOS DE EDAD...- ADULTOS JOVENES, DE AMBOS SEXOS ENTRE LOS: 18 Y LOS 29 ANOS DE EDAD... ----------- EL SEMAFORO, como administrador electronico de la CIRCULACION VIAL, es un: EDUCADOR ELECTRONICO.... CAPAZ DE AHORRAR a cada ciudad o municipalidad que los IMPORTA desde ESTADOS UNIDOS DE AMERICA, millones de dolares, ANUALES, en : 1. MOVILIZACION DE LA INFRAESTRUCTURA DE MEDICINA EMERGENCIOLOGICA, del : 911. 2. EL SEMAFORO PREVIENE: ACCIDENTES Y MUERTES.... 3. EL SEMAFORO NO ES MEDICO, pero : SALVA VIDAS... 4. EL SEMAFORO NO ES ADMINISTRADOR: Pero administra los flujos VEHICULARES... PERO NO SOLO LOS FLUJOS VEHICULARES GRANDES de 4 o mas RUEDAS.... LOS QUE MUEREN EN ACCIDENTES DE CARRETERA, EN TODO EL MUNDO, no solo son conductores de carros, patanas, SINO QUE EL 54 % segun LA OMS, en 2019, son: 1. MOTOCICLISTAS... Deliveries. Motoconchos. Motociclistas recreativos. 2.PEATONES 2.1 DE TODOS LOS GRUPOS DE EDAD... 2.2. DE TODAS LAS CLASES SOCIALES... 3. CICLISTAS. 3.1. DE TODOS LOS GRUPOS DE EDAD. 3.2. DE TODAS LAS CLASES SOCIALES. Yoe F. Santos/CCIAV. Talents, Criticism, Friendship! Salut, Polis, Ecumene! (1959-2019) --------------- Flag semaphore From Wikipedia, the free encyclopedia Jump to navigationJump to search "Semaphore" redirects here. For other uses, see Semaphore (disambiguation). A US Navy crewman signals the letter 'U' using flag semaphore during an underway replenishment exercise (2005) Flag semaphore (from the Greek σῆμα, sema, meaning sign and φέρω, phero, meaning to bear; altogether the sign-bearer) is the telegraphy system conveying information at a distance by means of visual signals with hand-held flags, rods, disks, paddles, or occasionally bare or gloved hands. Information is encoded by the position of the flags; it is read when the flag is in a fixed position. Semaphores were adopted and widely used (with hand-held flags replacing the mechanical arms of shutter semaphores) in the maritime world in the 19th century.[citation needed] It is still used during underway replenishment at sea and is acceptable for emergency communication in daylight or using lighted wands instead of flags, at night.[citation needed] Contents 1 Contemporary semaphore flag system 1.1 Characters 2 Origin 3 Japanese semaphore 4 Practical use in communication 5 See also 6 References 7 External links Contemporary semaphore flag system For history, see Semaphore line § History. The current flag semaphore system uses two short poles with square flags, which a signal person holds in different positions to signal letters of the alphabet and numbers. The signalperson holds one pole in each hand, and extends each arm in one of eight possible directions. Except for in the rest position, the flags do not overlap. The flags are colored differently based on whether the signals are sent by sea or by land. At sea, the flags are colored red and yellow (the Oscar flag), while on land, they are white and blue (the Papa flag). Flags are not required; their purpose is to make the characters more obvious.[citation needed] Characters The following 30 semaphore characters are presented as they would appear when facing the signalperson: A or 1 B or 2 C or 3 Acknowledge / Correct D or 4 E or 5 Error (if signaled 8 times) F or 6 G or 7 H or 8 I or 9 J Letters to follow K or 0 L M N O P Q R S T U V W X Y Z Rest / Space Numerals (#) Error / Attention Cancel / Annul Disregard previous signal Numbers can be signaled by first signaling "Numerals". Letters can be signaled by first signaling "J". The sender uses the "Attention" signal to request permission to begin a transmission. The receiver uses a "Ready to receive" signal not shown above to grant permission to begin the transmission. The receiver raises both flags vertical overhead and then drops them to the rest position, once only, to grant permission to send. The sender ends the transmission with the "Ready to receive" signal. The receiver can reply with the "Attention" signal. At this point, sender and receiver change places. Origin Flag semaphore originated in 1866 as a handheld version of the optical telegraph system of Home Riggs Popham used on land, and its later improvement by Charles Pasley. The land system consisted of lines of fixed stations (substantial buildings) with two large, moveable arms pivoted on an upright membet. Such a system was inconvenient to install on board a ship. Flag semaphore provided an easy method of communicating ship-to-ship or ship-to-shore when the distances were not too great. Although based on the optical telegraph, by the time flag semaphore was introduced the optical telegraph had been entirely replaced by the electrical telegraph some years previously.[1] Japanese semaphore The combination used for オ ("O") The Japanese merchant marine and armed services have adapted the flag semaphore system to the Japanese language.[2] Because their writing system involves a syllabary of about twice the number of characters in the Latin alphabet, most characters take two displays of the flags to complete; others need three and a few only one. The flags are specified as a solid white square for the left hand and a solid red one for the right. The display motions chosen are not like the "rotary dial" system used for the Latin alphabet letters and numbers; rather, the displays represent the angles of the brush strokes used in writing in the katakana syllabary and in the order drawn. For example, the character for "O" [オ], which is drawn first with a horizontal line from left to right, then a vertical one from top to bottom, and finally a slant between the two; follows that form and order of the arm extensions. It is the right arm, holding the red flag, which moves as a pen would, but in mirror image so that the observer sees the pattern normally. As in telegraphy, the katakana syllabary is the one used to write down the messages as they are received. Also, the Japanese system presents the number 0 by moving flags in a circle, and those from 1 through 9 using a sort of the "rotary dial" system, but different from that used for European languages. Japanese flag signals with the associated kana – k s t n h m y r w a Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 3.svg あ ア Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 3.svg か カ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 12.svg さ サ Japanese Semaphore Basic Stroke 11.svgJapanese Semaphore Basic Stroke 5.svg た タ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 3.svg な ナ Japanese Semaphore Basic Stroke 10.svg は ハ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 5.svg ま マ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 4.svg や ヤ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 9.svg ら ラ Japanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 9.svg わ ワ i Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 2.svg い イ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 2.svg き キ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 7.svg し シ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Reversed Basic Stroke 2.svg ち チ Japanese Semaphore Basic Stroke 6.svg に ニ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 7.svg ひ ヒ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 1.svg み ミ * Japanese Semaphore Basic Stroke 12.svg り リ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 12.svg ゐ ヰ u Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 9.svg う ウ Japanese Semaphore Basic Stroke 11.svg く ク Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 5.svg す ス Japanese Semaphore Basic Stroke 12.svgJapanese Semaphore Basic Stroke 3.svg つ ツ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 4.svg ぬ ヌ Japanese Semaphore Basic Stroke 9.svg ふ フ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 5.svg む ム Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 1.svg ゆ ユ Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 7.svg る ル * e Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Reversed Basic Stroke 2.svgJapanese Semaphore Basic Stroke 1.svg え エ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 3.svg け ケ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 7.svg せ セ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 3.svg て テ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 1.svg ね ネ Japanese Semaphore Basic Stroke 4.svg へ ヘ Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 5.svg め メ * Japanese Semaphore Basic Stroke 7.svg れ レ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 1.svg ゑ ヱ o Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 3.svg お オ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 1.svg こ コ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 3.svg そ ソ Japanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 5.svg と ト Japanese Semaphore Basic Stroke 3.svg の ノ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 10.svg ほ ホ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 7.svg も モ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 6.svg よ ヨ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 8.svg ろ ロ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 9.svg を ヲ 'n Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 1.svg ん ン [2] Practical use in communication Semaphore flags are also sometimes used as means of communication in the mountains where oral or electronic communication is difficult to perform. Although they do not carry flags, the Royal Canadian Mounted Police officers have used hand semaphore in this manner. Some surf-side rescue companies, such as the Ocean City, Maryland Beach Patrol, use semaphore flags to communicate between lifeguards.[3] The letters of the flag semaphore are also a common artistic motif. One enduring example is the peace symbol, adopted by the Campaign for Nuclear Disarmament in 1958 from the original logo created by a commercial artist named Gerald Holtom from Twickenham, London.[4] Holtom designed the logo for use on a protest march on the Atomic Weapons Establishment at Aldermaston, near Newbury, England. On 4 April 1958, the march left Trafalgar Square for rural Berkshire, carrying Ban the Bomb placards made by Holtom's children making it the first use of the symbol. Originally, it was purple and white and signified a combination of the semaphoric letters N and D, standing for "nuclear disarmament," circumscribed by a circle.[5] The album cover for the Beatles' 1965 album Help! was to have portrayed the four band members spelling "help" in semaphore, but the result was deemed aesthetically unpleasing, and their arms were instead positioned in a meaningless but aesthetically pleasing arrangement.[6] Along with Morse code, flag semaphore is currently used by the Navy and also continues to be a subject of study and training for young people of Boy Scouts. In a satirical nod to the flag semaphore's enduring use into the age of the Internet, on April Fools' Day 2007 the Internet Engineering Task Force standards organization outlined the Semaphore Flag Signaling System, a method of transmitting Internet traffic via a chain of flag semaphore operators.[7] The second episode in the second series of Monty Python's Flying Circus depicted famous stories retold using various communication systems, including Wuthering Heights in semaphore. See also Flag signals Heliograph International Code of Signals Railway signalling Aircraft marshalling Semaphore line Signal lamp Substitute flag Traffic guard References Signals at Sea, Information sheet no 104, Library and Information Services, The National Museum: Royal Navy: Portsmouth, accessed and archived 26 October 2019. "The Flag Signalling System in Japan". 22 July 2011. Archived from the original on 22 July 2011. Retrieved 10 October 2013. "Ocean City Beach Patrol Semaphore Alphabet" (PDF). Oceancitymd.gov. Bayley, Stephen (6 April 2008). "Fifty years on, the CND logo is the ultimate design for life". The Guardian. London. Retrieved 6 April 2008. Kathryn Westcott (20 March 2008). "World's best-known protest symbol turns 50". BBC News. He [Gerald Holtom] considered using a Christian cross motif but, instead, settled on using letters from the semaphore – or flag-signalling – alphabet, super-imposing N (uclear) on D (isarmament) and placing them within a circle symbolising Earth. Freeman, Robert (2003). The Beatles: A Private View. NY: Barnes & Noble. p. 62. ISBN 978-1-59226-176-5. Hofmueller, Jogi; Bachmann, Aaron; Zmoelnig, IOhannes (1 April 2007). The Transmission of IP Datagrams over the Semaphore Flag Signaling Syst em (SFSS). IETF. doi:10.17487/RFC4824. RFC 4824. Retrieved 20 March 2010. External links Wikimedia Commons has media related to Flag semaphore. Visual Signalling in the Royal Canadian Navy Semaphore translator applet vte Types of writing systems vte Telecommunications Categories: Encodings of JapaneseLatin-script representationsNonverbal communicationOptical communicationsSignal flagsScripts not encoded in UnicodeScoutcraft Navigation menu Not logged inTalkContributionsCreate accountLog inArticleTalkReadEditView historySearch Search Wikipedia Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store Interaction Help About Wikipedia Community portal Recent changes Contact page Tools What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page In other projects Wikimedia Commons Print/export Create a book Download as PDF Printable version Languages Deutsch Español Français Bahasa Indonesia 日本語 Русский Türkçe اردو 中文 21 more Edit links This page was last edited on 26 October 2019, at 22:49 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersStatisticsCookie statementMobile view ---------- ------- LABOR WANTS PRIDE & JOY in DOING A 1. GOOD WORK, 2. a sense of MAKING or doing 3.SOMETHING BEAUTIFUL 4.OR USEFUL 5.to be treated with DIGNITY & respect 6.AS BROTHER AND SISTER... Thorstein Veblen (1899) -------- CADA NINO, cada nina en el mundo, llega a su PRIMER DIA DE CLASES, con sus PROPIOS PROYECTOS DE : INVESTIGACION... 1. LA FUNCION DE LA ESCUELA, es ayudarle a CANALIZAR: 1.1. SUS SUENOS. 1.2. SUS TALENTOS.... 2. LA FUNCION DEL MAESTRO O DE LA MAESTRA EN EDUCACION INFANTIL O PAIDOLOGICA, es : PROPORCIONARLE A CADA NINO Y A CADA NINA... 1. LAS HERRAMIENTAS METODOLOGICAS para que pueda perseguir Y LOGRAR SUS SUENOS: 1. En la vida o trayectoria ESCOLAR. 2. En la vida o trayectoria UNIVERSITARIA... 3. Pero POR SOBRE TODO: EN LA VIDA ADULTA... FRANCESCO TONUCCI NACIDO NINO ANONIMO EN : 1941... UN SOBREVIVIENTE DE LA ITALIA del Duce: BENITO MUSSOLINI. UNO DE LOS NINOS HAMBREADOS DE LA ITALIA DE LA POST-SEGUNDA GUERRA MUNDIAL.... Un AUTOR ORIGINAL del mundo. UN PSICO-PEDAGOGO, de fama y prestigio mundiales... Un ser humano LLENO DE AMOR, de ilusion, de OPTIMISMO, de creatividad desde su : PERSONAJE FRATO, para ayudar a los padres y madres de FAMILIA, del mundo A COMPRENDER MEJOR: 1. Que es la ESCUELA? 2. Que es el APRENDIZAJ INFANTIL? 3. POR QUE LOS NINOS Y NINAS, son la: MAYOR RIQUEZA, CON QUE CUENTAN: 3.1. TODAS las familias del mundo, en los 5 continentes. 3.2. TODAS las ECONOMIAS DEL MUNDO, en los 5 continentes, en el siglo XIX, en el siglo XX y en el siglo XXI. DESDE SU PROYECTO ORIGINAL: LAS CIUDADES AMIGAS DE LOS NINOS. ------------- MI OPINION? Es que NO tengo OPINION. Benjamin Franklin. ------- UN HOMBRE es un LOCO, HASTA QUE SUS IDEAS; TRIUNFAN. Mark Twain. ----- SI NO LOGRO VER, la liberacionn del pueblo dominicano, en vida, si muero, .... SE QUE ESTE PUEBLO, SE LIBERARA: CON MIS IDEAS. JUAN EMILIO BOSCH GAVINO (1976). CIENTIFICO TICs, de la NACION Y DE LA REPUBLICA DOMINICANA. ----------- EL PROGRESO SE CONSTRUYE... TRABAJANDO... AQUI, HAY FUTURO! -------------- Telecomunicación. ≪ La distancia, que es el impedimento principal del progreso de la humanidad, será completamente superada, en palabra y acción. La humanidad estará unida, las guerras serán imposibles, y la paz reinará en todo el planeta. ≫ — Nikola Tesla Una telecomunicación es toda transmisión y recepción de señales de cualquier naturaleza, típicamente electromagnéticas, que contengan signos, sonidos, imágenes o, en definitiva, cualquier tipo de información que se desee comunicar a cierta distancia.1 Por metonimia, también se denomina telecomunicación (o telecomunicaciones, indistintamente)nota 1 a la disciplina que estudia, diseña, desarrolla y explota aquellos sistemas que permiten dichas comunicaciones; de forma análoga, LA INGENIERIA DE TELECOMUNICACIONES la ingeniería de telecomunicaciones RESUELVE LOS PROBLEMAS TECNICOS resuelve los problemas técnicos ASOCIADOS A ESTA DISCIPLINA asociados a esta disciplina. Las telecomunicaciones SON UNA INFRAESTRUCTURA BASICA son una infraestructura básica DEL CONTEXTO ACTUAL del contexto actual. LA CAPACIDAD DE PODER COMUNICAR La capacidad de poder comunicar CUALQUIER ORDEN: 1. MILITAR. 2. POLITICA. cualquier orden militar o política DE FORMA CASI INSTANTANEA de forma casi instantánea 1. HA SIDO RADICAL EN MUCHOS 2.ACONTECIMIENTOS HISTORICOS ha sido radical en muchos acontecimientos HISTORICOS DE LA EDAD CONTEMPORANEA históricos de la Edad Contemporánea —el primer sistema de telecomunicaciones MODERNO APARECE DURANTE LA REVOLUCION FRANCESA moderno aparece durante la Revolución Francesa— . Pero además, la TELECOMUNICACION CONSTITUYE HOY telecomunicación constituye hoy en día UN FACTOR: 1. SOCIAL. 2. ECONOMICO. un factor social y económico DE GRAN RELEVANCIA de gran relevancia. Así, estas tecnologías adquieren 1. UNA IMPORTANCIA. 2. COMO SU UTILIDAD una importancia como su utilidad en CONCEPTOS DE LA : 1. GLOBALIZACION. 2. SOCIEDAD DE: 2.1. INFORMACION. 2.2. CONOCIMIENTO conceptos de la globalización o la sociedad de la información y del conocimiento; QUE SE COMPLENTA CON 1. IMPORTANCIA DE LAS MISMAS. que se complementa con la importancia de las mismas 2. EN CUALQUIER TIPO DE ACTIVIDAD: 2.1.MERCANTIL. 2.2. FINANCIERA. 2.3. BURSATIL. 2.4. EMPRESARIAL. en cualquier tipo de actividad mercantil, financiera, bursátil o empresarial. LOS MEDIOS DE COMUNICACION 1. DE MASAS. 2. SE VALEN DE TELECOMUNICACIONES. Los medios de comunicación de masas también se valen de las telecomunicaciones 2.1. PARA COMPARTIR CONTENIDOS. 2.2. AL PUBLICO. para compartir contenidos al público, 2.3. DE GRAN IMPORTANCIA 2.4.de gran importancia a A LA HORA DE ENTENDER 2.4.1. EL CONCEPTO DE SOCIEDAD DE LA INFORMACION 2.4.2. SOCIEDAD DE MASAS: MASS SOCIETY. la hora de entender el concepto de sociedad de masas. LA TELECOMUNICACION INCLUYE: 1. MUCHAS TECNOLOGIAS. La telecomunicación incluye muchas tecnologías como: 1.1. LA RADIO. 1.2. TELEVISION. 1.3. TELEFONO. 1.4. TELEFONIA MOVIL 1.5. COMUNICACIONES DE DATOS. 1.6. REDES INFORMATICAS. la radio, televisión, teléfono y telefonía móvil, comunicaciones de datos, redes informáticas, 1.7.INTERNET 1.8. RADIONAVEGACION O GPS. 1.9. TELEMETRIA Internet, radionavegación o GPS o telemetría. Gran parte de estas tecnologías, que NACIERON PARA SATISFACER: 1. NECESIDADES MILITARES nacieron para satisfacer necesidades militares 2. O CIENTIFICAS o científicas, HAN CONVERGIDO OTRAS: 1. ENFOCADAS A UN CONSUMO ha convergido en otras enfocadas a un consumo 1.1. NO ESPECIALIZADO 1.2. LLAMADAS TECNOLOGIAS DE LA : 1. INFORMACION. 2. COMUNICACION. no especializado llamadas tecnologías de la información y la comunicación, DE GRAN IMPORTANCIA EN: 1. LA VIDA DIARIA. 2. DE LAS PERSONAS. de gran importancia en la vida diaria de las personas, 3. LAS EMPRESAS. 4. LAS INSTITUCIONES: 4.1. ESTATALES. 4.2. MUNICIPALES. 4.3. EDUCATIVAS INFANTILES O PADILOGICAS. 4.4. CIENCIAS DEL APRENDIZAJE INFANTIL dentro del la PSICOLOGIA INFANTIL DEL DESARROLLO: INTEGRAL DE LA PERSONA HUMANA, 1.EN KINDER, 2.ESCUELA PRIMARIA, 3.BACHILLERATO... -en todo el mundo, en los 5 continentes...- 1. LAS INSTITUCIONES ESTATALES. 2. LAS INSTITUCIONES POLITICAS. las empresas o las instituciones estatales y políticas. ES POR ESTE CONTEXTO QUE LA TENDENCIA ACTUAL Es por este contexto que la tendencia actual ES LA COMUNION -DE LAS TELECOMUNICACIONES- es la comunión de la telecomunicación CON OTRAS DISCIPLINAS: 1.INFORMATICA. 2. ELECTRONICA. con otras disciplinas como la informática, la electrónica 3. O LA TELEMATICA PARA: 1. DISENAR. 2. OFRECER ESTOS: 1. PRODUCTOS.... 2. SERVICIOS. o la telemática para diseñar y ofrecer estos productos y servicios, LO SUFICIENTEMENTE: 1. COMPLEJOS. 2. MULTIDISCIPLINARES. lo suficientemente complejos y multidisciplinares COMO PARA QUE LA FRONTERA como para que la frontera ENTRE LA APORTACION DE DICHAS: DISCIPLINAS entre la aportación de dichas disciplinas NO SEA PERCIBIDA POR: LAS PERSONAS. no sea percibida por las personas —a pesar de que un informático, un eléctrico y un telecomunicador TENGAN DISTINTOS AMBITOS: DISCIPLINARIOS tengan distintos ámbitos disciplinarios—. Índice 1 Etimología y evolución del término 2 Historia 2.1 Antecedentes 2.2 Siglo XIX. Los avances eléctricos 2.2.1 El telégrafo 2.2.2 El teléfono 2.2.3 Los cables submarinos 2.3 Siglo XX. Guerra y electrónica 2.3.1 La radiocomunicación 2.4 Época contemporánea 3 Contenido de la disciplina 3.1 Base teórica 3.2 Información, comunicación y lenguaje. Digitalización 3.3 Sistemas de comunicación 3.4 Medios de transmisión 3.4.1 Medios de transmisión guiados 3.4.2 Medios de transmisión no guiados 3.5 Técnicas básicas de las comunicaciones 3.6 Redes y servicios de telecomunicación 3.6.1 Redes y servicios de voz y datos 3.6.2 Redes y servicios de difusión radio y TV 3.6.3 Redes y servicios multiservicio de banda ancha: Triple play 3.6.4 Redes y servicios telemáticos. Internet 3.7 Otras redes y servicios profesionales y académicos 4 Influencia de las telecomunicaciones 4.1 La influencia en la tecnología 4.2 La influencia política 4.3 La influencia en la guerra 4.4 La influencia en la paz 4.5 La influencia económica 4.6 La influencia social 4.7 Las tecnologías de la información y la comunicación 5 Cooperación internacional en la telecomunicación 6 Regulación y economía de las telecomunicaciones 6.1 Los recursos naturales 6.2 El mercado de las telecomunicaciones 6.3 La normalización en las telecomunicaciones 7 Telecomunicaciones y salud 7.1 Efectos malignos 7.2 Efectos benignos 8 Véase también 9 Notas 10 Referencias 11 Bibliografía 12 Enlaces externos Etimología y evolución del término El término «telecomunicación» tiene su origen en el francés Télécommunication, PALABRA QUE INVENTO EL INGENIERO palabra que inventó el ingeniero Édouard Estaunié al añadir a la palabra latina COMMUNICARE communicare —compartir— el prefijo GRIEGO TELE griego tele-, QUE SIGNIFICA DISTANCIA... que significa distancia.2 Con este término pretendía USAR UNA MISMA PALABRA usar una misma palabra para DENOMINAR A LA denominar a la « 1. TRANSMISION DE CONOCIMIENTO transmisión del conocimiento 2. A DISTANCIA... 3. MEDIANTE EL USO DE LA ELECTRICIDAD... a distancia mediante el uso de la electricidad», que hasta ese momento ERA : 1. TELEFRAFIA. 2. TELEFONIA. era la telegrafía y la telefonía, Y LO PUBLICO POR PRIMERA VEZ y lo publicó por primera vez en TRAITE PRACTIQUE DE LA TELECOMMUNICATION ELECTRIQUE (1904) Traité Practique de Télécommunication Électrique (Télégraphie-Téléphonie) de 1904.2 El castellano asimiló con éxito el préstamo EN VARIOS AMBITOS: 1. DE LA VIDA PUBLICA. 2. ACADEMICA. 3. POLITICA. 4. EMPRESARIAL. en varios ámbitos de la vida pública, académica, política y empresarial. YA EN 1907 SE IMPARTIA LA : ASIGNATURA: TELECOMMUNICATION Ya en el 1907 se impartía una asignatura de «telecomunicación» EN LA ESCUELA OFICIAL DE TELEGRAFIA DE MADRID en la Escuela Oficial de Telegrafía de Madrid CON LOS CONTENIDOS CURRICULARES: 1. TELEFONIA. 2. TELEGRAFIA. 3. RADIOTELEGRAFIA. 4. RADIOTELEFONIA. con los contenidos de telefonía, telegrafía, radiotelegrafía y radiotelefonía; Y EN EL ANO 1920... y en el año 1920 JUAN ANTONIO GAVARRIATO Juan Antonio Galvarriato PUBLICO EL CORREO Y LA TELECOMUNICACION EN ESPANA publicó El Correo y la Telecomunicación en España.2 LA VIDA POLITICA TAMBIEN SE HABITUO.... La vida política también se habituó A USAR EL TERMINO a usar el término y, EN 1921... EL GOBIERNO DE MANEL ALLENDESALAZAR en 1921, el gobierno de Manuel Allendesalazar SOLICITO UN AMBICIOSO PLAN DE AMPLIACION solicitó un ambicioso plan de ampliación DE LOS SERVICIOS DE de los «servicios de TELECOMUNICACION», que si bien nunca llegó a materializarse debido al Desastre de Annual, demuestra EL USO DEL TERMINO EN: CASTELLANO el uso del término en castellano.2 De hecho, en esa época «telecomunicación» ERA SINONIMO DE MODERNIDAD era sinónimo de modernidad, POR LO QUE SE INCORPORO AL NOMBRE por lo que se incorporó al nombre DE MUCHAS COMPANIAS DE LA EPOCA de muchas compañías de la época como la "Compañía Ibérica de Telecomunicación" de Antonio Castilla López en 1916 o la "Compañía de Telecomunicación y Electricidad" en 1919.2 LA CONSOLIDACION REAL DEL : TERMINO La consolidación real del término A NIVEL INTERNACIONAL a nivel internacional LLEGO CON LA CONSTITUCION DE LA : UNION INTERNACIONAL DE TELECOMUNICACIONES (UIT) llegó con la constitución de la Unión Internacional de Telecomunicaciones (UIT) EN LA CONFERENCIA DE MADRID (1932) en la Conferencia de Madrid de 1932, en la que SE DEFINIO se definió «telecomunicación» como «TODA COMUNICACION... toda comunicación telegráfica o telefónica DE: 1. SIGNOS. 2. SENALES. 3. ESCRITOS. 4. IMAGENES. 5. SONIDOS. de signos, señales, escritos, imágenes y sonidos 1. DE CUALQUIER NATURALEZA. 2. POR: 2.1 HILOS. 2.2.RADIO 2.3. OTROS SISTEMAS O PROCEDIMIENTOS: 2.3.1. ELECTRICA. 2.3.2. VISUAL (SEMAFOROS) de cualquier naturaleza, por hilos, radio u otros sistemas o procedimientos eléctrica o visual (semáforos)».2 El avance de la telecomunicación acabó por dejar desfasada esta definición y, en el actual Reglamento de Radiocommunicaciones, SE REDEFINE EL TERMINO se redefine el término: ≪ Telecomunicación: 1.Toda transmisión, 1.1.emisión o 1.2.recepción de: 1. signos, 2.señales, 3. escritos, 4. imágenes, 5.sonidos o 5. informaciones DE CUALQUIER NATURALEZA de cualquier naturaleza POR MEDIO DE : 1.HILO. 2. RADIOELECTRICIDAD. 3. MEDIOS OPTICOS. 4. OTROS SISTEMAS: ELECTROMAGNETICOS. por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos (CS). ≫3 Por metonimia, EL ESTUDIO DE LA TELECOMUNICACION O DE LAS TELECOMUNICACIONES el estudio de la telecomunicación o las telecomunicaciones se denomina «Telecomunicación» o «Telecomunicaciones» indistintamente. Historia Cuadro de Luc-Olivier Merson, 1869. SEGUN LA LEYENDA DE MARATON DE HERODOTO... Según la leyenda de Maratón de Heródoto, EL SOLDADO FILIPIDES el soldado Filípides recorrió los 42 km que separan Atenas de Esparta PORTANDO UN MENSAJE DE : AYUDA portando un mensaje de ayuda. Artículo principal: 1.Historia de las telecomunicaciones 2.Véase también: Cronología de las tecnologías de la comunicación. -------- Aunque, como se ha visto, la «telecomunicación» COMO ESTUDIO UNIFICADO DE LAS COMUNICACIONES como estudio unificado de las comunicaciones A DISTANCIA ES UNA IDEA RECIENTE a distancia es una idea reciente, SIEMPRE HAN EXISTIDO MEDIOS DE COMUNICACION siempre han existido medios de comunicación QUE TAMBIEN SON ESTUDIADOS POR ESTA DISCIPLINA. que también son estudiados por esta disciplina. A lo largo de la historia han existido diferentes situaciones en las que HA SIDO NECESARIA UNA COMUNICACION A DISTANCIA ha sido necesaria una comunicación a distancia, COMO EN: 1. LA GUERRA. 2. EL COMERCIO. como en la guerra o en el comercio.4 Sin embargo, LA BASE ACADEMICA PARA EL ESTUDIO la base académica para el estudio DE ESOS MEDIOS: 1. TEORIA DE LA INFORMACION. de estos medios, como la teoría de la información, datan de mediados del siglo xx. 2. DATAN DE MEDIADOS DEL SIGLO XX. Conforme las distintas civilizaciones empezaron a extenderse por territorios cada vez mayores FUE NECESARIO : 1.UN SISTEMA 2.ORGANIZADO fue necesario un sistema organizado de comunicaciones QUE PERMITIESE EL CONTROL 1.EFECTIVO 2.DE ESOS TERRITORIOS que permitiese el control efectivo de esos territorios.5 Es probable que el METODO DE TELECOMUNICACIONES MAS ANTIGUO: MENSAJEROS... método de telecomunicaciones más antiguo sea el realizado con mensajeros, MENSAJEROS: PERSONAS QUE RECORRIAN GRANDES 1.DISTANCIAS personas que recorrían largas distancias 2.CON SUS MENSAJES... con sus mensajes. Hay registros de que YA EN LAS PRIMERAS CIVILIZACIONES ya las primeras civilizaciones 1. COMO LA SUMERIA. 2. LA PERSA. 3. LA EGIPCIA. 4. LA ROMANA. como la sumeria, la persa, la egipcia o la romana IMPLEMENTABAN DIVERSOS SISTEMAS DE : CORREO POSTAL. implementaron diversos sistemas de correo postal a lo largo de sus respectivos territorios. Antecedentes. Las primeras tecnologías usadas en la telecomunicación USABAN LAS SENALES VISUALES usaban las señales visuales COMO: 1. ALMENARAS. 2. SENALES DE HUMO. como las almenaras o las señales de humo, 3. ACUSTICAS MEDIANTE EL USO DE: 3.1.TAMBORES. 3.2.CUERNOS, 3.3.BRAMADERAS o acústicas como mediante el uso de tambores, cuernos o bramaderas.4 Así, EL DRAMATURGO GRIEGO ESQUILO el dramaturgo griego Esquilo (525-456 a. C.) RELATA EN SU OBRA: AGAMENON relata en su obra Agamenón que el personaje homónimo de la mitología COMUNICO A LA CIUDAD DE ARGOS comunicó a la ciudad de Argos, de la que era rey, Y A SU ESPOSA CLITEMNESTRA y a su esposa Clitemnestra, LA VICTORIA DE LOS AQUEOS SOBRE TROYA la victoria de los aqueos sobre Troya MEDIANTE UNA CADENA DE : SENALES... DE FUEGO... mediante una cadena de señales de fuego que iban de un punto a otro.67 También EL HISTORIADOR GRIEGO POLIBIO el historiador griego Polibio (204-122 a. C.) explica otro ejemplo de comunicaciones a larga distancia, EL TELEGRAFO HIDRAULICO el telégrafo hidráulico, que según cuenta fue DESARROLLADO POR ENEAS EL TACTICO desarrollado por Eneas el Táctico en el siglo iv a. C..89 Consistía en dos cubas de agua provistas de sendos grifos y, sumergida de forma vertical, UNA TABLILLA CON LOS : 1. SIGNOS. 2. SENALES. una tablilla con los signos y señales QUE SE DESEABAN : TRANSMITIR que se deseaban transmitir. El emisor alertaba al receptor CON ANTORCHAS con antorchas el momento en el que ambos debían abrir y cerrar el agua, de tal forma que el nivel del agua indicaba qué mensaje de la tablilla se deseaba transmitir.8 ESAS PRIMERAS MANIFESTACIONES: TECNICAS, NO DIERON COMO RESULTADO... Sin embargo, estas primeras manifestaciones técnicas no dieron como resultado SISTEMAS DE TELECOMUNICACION REALES sistemas de telecomunicación reales, sino que hasta la EDAD CONTEMPORANEA Edad Contemporánea NO SE INVENTARON FORMAS no se inventaron formas PARA REALIZAR COMUNICACIONES: A DISTANCIA... para realizar comunicaciones a distancia. FUE EL CORREO POSTAL... Fue el correo postal, en sus diferentes manifestaciones, EL QUE ASUMIO EL PAPEL DE: 1. COMUNICAR A LAS PERSONAS. 2. DURANTE CASI TODA : LA HISTORIA. el que asumió el papel de comunicar a las personas durante casi toda la historia.10 Más reciente es el uso de los TELEGRAFOS OPTICOS telégrafos ópticos, considerado el PRIMER SISTEMA DE TELECOMUNICACIONES MODERNO primer sistema de telecomunicación moderno AL PERMITIR : CODIFICAR IMAGENES al permitir codificar mensajes QUE NO HABIAN SIDO PREFIJADAS CON ANTERIORIDAD que no habían sido prefijados con anterioridad; hasta entonces, SE TRANSMITIAN MENSAJES SENCILLOS se transmitían mensajes sencillos, COMO: 1. PELIGRO. 2. VICTORIA. como 'peligro' o 'victoria', SIN LA POSIBILIDAD DE: 1. DAR DETALLES. 2. DAR DESCRIPCIONES. sin la posibilidad de dar detalles o descripciones. Se trataba de unas estructuras provistas de brazos móviles que, mediante cuerdas y poleas, adoptaban diferentes posiciones con las que codificar el mensaje.11 AUNQUE FUE ROBERT HOOKE Aunque fue Robert Hooke quien, en 1684, PRESENTO A LA ROYAL SOCIETY presentó a la Royal Society UN PRIMER DISENO DETALLADO un primer diseño detallado DE UN TELEGRAFO OPTICO de un telégrafo óptico,1213 no fue hasta principios del siglo xix en Francia CUANDO SE IMPLEMENTO DE FORMA: EFICAZ cuando se implementó de una forma eficaz. Fue durante la Revolución francesa, cuando existían en el país UNA NECESIDAD IMPORTANTE una necesidad importante DE PODER TRANSMITIR: ORDENES... de poder transmitir las órdenes DE FORMA: 1. EFICAZ. 2. RAPIDA. de una forma eficaz y rápida,13 cuando el ingeniero Claude Chappe Y SUS HERMANOS INSTALARON y sus hermanos instalaron 556 telégrafos ópticos que cubrían una distancia de casi 5000 kilómetros.11 La primera línea, de 22 torres y 230 kilómetros, se dispuso en 1792 ENTRE PARIS Y LILLE entre París y Lille,14 y en 1794, TRANSMITIO LA NOTICIA DE LA VICTORIA FRANCESA transmitió la noticia de la victoria francesa en Condé-sur-l'Escaut:15. Condé ha vuelto a poder de la República: la rendición se ha efectuado esta mañana a las seis.nota 2 Primer mensaje del telégrafo óptico de Chappe.1617 El sistema, que RESULTO SER UN EXITO resultó ser un éxito en el terreno militar, SE EXTENDIO POR TODA EUROPA se extendió por toda Europa aunque con las modificaciones propias de cada país, COMO EL DISENO DE MURRAY como el diseño de Murray en Gran Bretaña18 o el de Breguet y Betancourt, así como el de Mathé, en España.19 El telégrafo hidráulico fue utilizado por Eneas el Táctico. Bramadera usada por los Apaches para comunicarse. Cuerno usado en sudamérica por la cultura moche en el siglo iii. En 1792 se instaló en Francia una red de telégrafos ópticos. Siglo XIX. Los avances eléctricos Ilustración de un artículo de Sömmerring de 1810. Como se aprecia el telégrafo electroquímico de Sömmerring usaba la electricidad de una pila voltaica, el instrumento alto de la derecha.20. Aunque fue en el 1729 CUANDO EL CIENTIFICO : STEPHEN GRAY cuando el científico Stephen Gray HABIA DESCUBIERTO FORMALMENTE QUE: LA ELECTRICIDAD había descubierto formalmente que la electricidad 1. PODIA SER TRANSMITIDA podía ser transmitida, 2. LOS PRIMEROS EXPERIMENTOS TECNICOS los primeros experimentos técnicos 3. NO SE REALIZARON HASTA EL SIGLO: XIX... no se materializaron hasta el siglo xix, cuando Alessandro Volta PRESENTO A LA ROYAL SOCIETY presentó a la Royal Society UN INSTRUMENTO CAPAS DE GENERAR un instrumento capaz de generar 1. CORRIENTE CONTINUA. corriente continua, 2. LA PILA VOLTAICA la pila voltaica —véase la historia de la electricidad—. Por ejemplo, un experimento inicial en la telegrafía eléctrica fue el TELEGRAFO ELECTROQUIMICO telégrafo electroquímico CREADO POR EL CIENTIFICO: ALEMAN creado por el científico alemán Samuel Thomas von Sömmerring en 1809,nota 3 basado en un diseño menos robusto de 1804 DEL CIENTIFICO ESPANOL: FRANCISCO SALVA del científico español Francisco Salvá . Campillo.212022 Este invento empleaba señales eléctricas que se enviaban por diversos cables metálicos, una por cada letra. En el extremo receptor las corrientes electrolizaban el ácido de unos tubos individuales de vidrio liberándose corrientes de burbujas de hidrógeno en el tubo correspondiente para que fueran vistas por el operador del receptor.2022 El telégrafo Artículos principales: Telégrafo y Telegrafía. Grabado de Popular Science Monthly Volume 3, p. 418 (en inglés). Telégrafo de una sola aguja de Cooke y Wheatstone. Cuando se giraba la manivela en un sentido, el movimiento se replicaba en el receptor. Grabado de Appletons' Cyclopædia of American Biography, p. 426. (en inglés) de 1900. Grabado del diseño original del telégrafo de Morse. El telégrafo eléctrico, que se desarrolló en la primera mitad del siglo xix, tiene su origen en multitud de experimentos y nuevas tecnologías, por lo que no se puede mencionar un único inventor aunque sí algunos nombres importantes.23 Por ejemplo, el diplomático ruso Pavel Schilling construyó en 1832, en su propio apartamento, un telégrafo electromagnético que usaba seis galvanómetros como receptores cuyas agujas señalaban el carácter enviado.24 Otro ejemplo lo encontramos en los célebres científicos Gauss y Weber, quienes en 1833 instalaron una línea telegráfica entre la universidad y el observatorio astronómico de Gotinga donde ambos trabajaban. Consiguieron comunicarse haciendo mover la aguja de un magnetómetro, con la que coordinaban el tiempo, y llegaron a desarrollar un código de 5 bits.24 Sin embargo no fue hasta la primera patente de un telégrafo cuando este salió de los laboratorios. Fue en 1837, cuando William Fothergill Cooke, quien se asoció con el profesor de física Charles Wheatstone, patentó un telégrafo de cinco conductores eléctricos que hacían mover otras cinco agujas imantadas con las que señalar una de las 20 letras que tenía el aparato.25 En julio de ese mismo año hicieron una demostración de su invento entre las estaciones de Euston y Camden Town,25 pero no fue hasta el 9 de julio de 1839 cuando empezó a funcionar su invento entre la estación de Paddington, en Londres y la de West Drayton, a 21 kilómetros de distancia.26 Esta vez, sin embargo, utilizaron una variante de su invento que usaba solo dos agujas y utilizaba un código de pulsos eléctricos positivos y negativos para cada carácter.26 Finalmente, tras conseguir reducir el número de agujas de su

Optical telegraph 

https://www.wikiwand.com/en/Optical_telegraph

 Connected to: FranceParisTelecommunication

From Wikipedia, the free encyclopedia
A replica of one of Chappe's semaphore towers in Nalbach, Germany
A replica of one of Chappe's semaphore towers in Nalbach, Germany
Illustration of signaling by semaphore in 18th century France. The operators would move the semaphore arms to successive positions to spell out text messages in semaphore code, and the people in the next tower would read them.


Illustration of signaling by semaphore in 18th century France. The operators would move the semaphore arms to successive positions to spell out text messages in semaphore code, and the people in the next tower would read them.


An optical telegraph is a line of stations, typically towers, for the purpose of conveying textual information by means of visual signals.

There are two main types of such systems; the semaphore telegraph which uses pivoted indicator arms and conveys information according to the direction the indicators point, and the shutter telegraph which uses panels that can be rotated to block or pass the light from the sky behind to convey information.

The most widely used system was invented in 1792 in France by Claude Chappe, and was popular in the late eighteenth to early nineteenth centuries.[1][2][3] This system is often referred to as semaphore without qualification. Lines of relay towers with a semaphore rig at the top were built within line-of-sight of each other, at separations of 5–20 miles (8.0–32.2 km). Operators at each tower would watch the neighboring tower through a telescope, and when the semaphore arms began to move spelling out a message, they would pass the message on to the next tower. This system was much faster than post riders for conveying a message over long distances, and also had cheaper long-term operating costs, once constructed. Semaphore lines were a precursor of the electrical telegraph, which would replace them half a century later, and would also be cheaper, faster, and more private.

The line-of-sight distance between relay stations was limited by geography and weather, and prevented the optical telegraph from crossing wide expanses of water, unless a convenient island could be used for a relay station. A modern derivative of the semaphore system is flag semaphore, the signalling with hand-held flags.

Etymology and terminology

The word semaphore was coined in 1801

BY THE FRENCH INVENTOR

 by the French inventor of the

semaphore line itself, Claude Chappe.[4]

He composed it from the Greek elements

 σῆμα (sêma, "sign"); and from φορός (phorós, "carrying"),[5] or φορά (phorá, "a carrying") from φέρειν (phérein, "to bear").[6] Chappe also coined the word tachygraph, meaning "fast writer".[7] However, the French Army preferred to call Chappe's semaphore system the telegraph, meaning "far writer", which was coined by French statesman André François Miot de Mélito.[8]

THE WORD SEMAPHORIC WAS

FIRST PRINTED IN ENGLISH

The word semaphoric was first printed

 in English in 1808:

"The newly constructed Semaphoric telegraphs", referring to the destruction of telegraphs in France.[9] The first use of the word semaphore in reference to English use was in 1816:

"The improved Semaphore has been erected on the top of the Admiralty", referring to the installation of a simpler telegraph invented by Sir Home Popham.[citation needed] Semaphore telegraphs are also called, "Chappe telegraphs" or "Napoleonic semaphore".

RBP

Early designs

EARLY DESIGNS



Illustration showing Robert Hooke's proposed system. At top are various symbols that might be used; ABCE indicates the frame, and D the screen behind which each of the symbols are hidden when not in use.
Illustration showing Robert Hooke's proposed system. At top are various symbols that might be used; ABCE indicates the frame, and D the screen behind which each of the symbols are hidden when not in use.
Optical telegraphy dates from ancient times, in the form of hydraulic telegraphs, torches (as used by ancient cultures since the discovery of fire) and smoke signals. Modern design of semaphores was first foreseen by the British polymath Robert Hooke, who gave a vivid and comprehensive outline of visual telegraphy to the Royal Society in a 1684 submission in which he outlined many practical details.

The system (which was motivated by military concerns, following the recent Battle of Vienna in 1683) was never put into practice.[10][11]

Sir Richard Lovell Edgeworth's proposed optical telegraph for use in Ireland. The rotational position of each one of the four indicators represented a number 1-7 (0 being "rest"), forming a four-digit number.

The number stood for a particular word in a codebook.
Sir Richard Lovell Edgeworth's proposed optical telegraph for use in Ireland.

The rotational position of each one of the four indicators represented a number 1-7 (0 being "rest"), forming a four-digit number. The number stood for a particular word in a codebook.
One of the first experiments of optical signalling was carried out by the Anglo-Irish landowner and inventor, Sir Richard Lovell Edgeworth in 1767.[12]

He placed a bet with his friend, the horse racing gambler Lord March, that he could transmit knowledge of the outcome of the race in just one hour. Using a network of signalling sections erected on high ground, the signal would be observed from one station to the next by means of a telescope.[13]

The signal itself consisted of a large pointer that could be placed into eight possible positions in 45 degree increments. A series of two such signals gave a total 64 code elements and a third signal took it up to 512. He returned to his idea in 1795, after hearing of Chappe's system.

France.

19th century demonstration of the semaphore

19th century demonstration of the semaphore

Credit for the first successful optical telegraph goes to the French engineer Claude Chappe and his brothers in 1792, who succeeded in covering France with a network of 556 stations stretching a total distance of 4,800 kilometres (3,000 mi). Le système Chappe was used for military and national communications until the 1850s.

Development in France

During 1790–1795, at the height of the French Revolution, France needed a swift and reliable communication system to thwart the war efforts of its enemies. France was surrounded by the forces of Britain, the Netherlands, Prussia, Austria, and Spain, the cities of Marseille and Lyon were in revolt, and the British Fleet held Toulon.

The only advantage France held was the lack of cooperation between the allied forces due to their inadequate lines of communication. In the summer of 1790, the Chappe brothers set about devising a system of communication that would allow the central government to receive intelligence and to transmit orders in the shortest possible time. Chappe considered many possible methods including audio and smoke.

He even considered using electricity, but could not find insulation for the conductors that would withstand the high-voltage electrostatic sources available at the time.[14][15] Chappe settled on using an optical system and the first public demonstration occurred on 2 March 1791 between Brûlon and Parcé, a distance of 16 kilometres (9.9 mi).

The system consisted of a modified pendulum clock at each end with dials marked with ten numerals. The hands of the clocks almost certainly moved much faster than a normal clock.

The hands of both clocks were set in motion at the same time with a synchronisation signal. Further signals indicated the time at which the dial should be read. The numbers sent were then looked up in a codebook. In their preliminary experiments over a shorter distance, the Chappes had banged a pan for synchronisation. In the demonstration, they used black and white panels observed with a telescope.

THE MESSAGE TO BE SENT

The message to be sent was chosen by town officials at Brûlon and sent by René Chappe to Claude Chappe at Parcé who had no pre-knowledge of the message. The message read "si vous réussissez, vous serez bientôt couverts de gloire" (If you succeed, you will soon bask in glory). It was only later that Chappe realised that he could dispense with the clocks and the synchronisation system itself could be used to pass messages.[16]

The Chappes carried out experiments during the next two years, and on two occasions their apparatus at Place de l'Étoile, Paris was destroyed by mobs who thought they were communicating with royalist forces.

Their cause was assisted by Ignace Chappe being elected to the Legislative Assembly. In the summer of 1792 Claude was appointed Ingénieur-Télégraphiste and charged with establishing a line of stations between Paris and Lille, a distance of 230 kilometres (about 143 miles). It was used to carry dispatches for the war between France and Austria. In 1794, it brought news of a French capture of Condé-sur-l'Escaut from the Austrians less than an hour after it occurred.[17] The first symbol of a message to Lille would pass through 15 stations in only nine minutes. The speed of the line varied with the weather, but the line to Lille typically transferred 36 symbols, a complete message, in about 32 minutes. Another line of 50 stations was completed in 1798, covering 488 km between Paris and Strasbourg.[18] From 1803 on, the French also used the 3-arm Depillon semaphore at coastal locations to provide warning of British incursions.[1]

Chappe system technical operation.

The Chappe brothers determined by experiment that it was easier to see the angle of a rod than to see the presence or absence of a panel. Their semaphore was composed of two black movable wooden arms, connected by a cross bar; the positions of all three of these components together indicated an alphabetic letter. With counterweights (named forks) on the arms, the Chappe system was controlled by only two handles and was mechanically simple and reasonably robust. Each of the two 2-metre-long arms could display seven positions, and the 4.6-metre-long cross bar connecting the two arms could display four different angles, for a total of 196 symbols (7×7×4). Night operation with lamps on the arms was unsuccessful.[19] To speed up transmission and to provide some semblance of security, a code book was developed for use with semaphore lines. The Chappes' corporation used a code that took 92 of the basic symbols two at a time to yield 8,464 coded words and phrases.

The revised Chappe system of 1795 provided not only a set of codes but also an operational protocol intended to maximize line throughput. Symbols were transmitted in cycles of "2 steps and 3 movements."

Step 1, movement 1 (setup): The indicator arms were turned to align with the cross bar, forming a non-symbol. The crossbar was then moved into position for the current symbol.
Step 1, movement 2 (transmission): The indicator arms were positioned for the current symbol. The operator then waited for the downline station to copy it.
Step 2, movement 3 (completion): The cross bar was turned to a vertical or horizontal position, indicating the end of a cycle.
In this manner, each symbol could propagate down the line as quickly as operators could successfully copy it, with acknowledgement and flow control built into the protocol. A symbol sent from Paris took 2 minutes to reach Lille through 22 stations and 9 minutes to reach Lyon through 50 stations. A rate of 2–3 symbols per minute was typical, with the higher figure being prone to errors. This corresponds to only 0.4–0.6 wpm, but with messages limited to those contained in the code book, this could be dramatically increased.[20][21]

History.

The Chappe Network in France

The Chappe Network in France

After Chappe's initial line (between Paris and Lille), the Paris to Strasbourg with 50 stations followed soon after (1798). Napoleon Bonaparte made full use of the military advantage of the telegraph by obtaining speedy information on enemy movements. In 1801 he had Abraham Chappe build an extra-large station for the purpose of transmitting across the English Channel in preparation for an invasion of Britain. A pair of such stations were built on a test line over a comparable distance.

The line to Calais was extended to Boulogne in anticipation and a new design station was briefly in operation at Boulogne, but the invasion never happened. In 1812, Napoleon took up another design of Abraham Chappe for a mobile telegraph that could be taken with him on campaign. This was still in use in 1853 during the Crimean War.[22]

The operational costs of the telegraph in the year 1799/1800 were 434,000 francs ($110 million in 2015 in labour costs[23]). In December 1800, Napoleon cut the budget of the telegraph system by 150,000 francs ($38 million in 2015)[23] leading to the Paris-Lyons line being temporarily closed. Chappe sought commercial uses of the system to make up the deficit, including use by industry, the financial sector, and newspapers. Only one proposal was immediately approved—the transmission of results from the state-run lottery. No non-government uses were approved.

 The lottery had been abused for years by fraudsters who knew the results selling tickets in provincial towns after the announcement in Paris, but before the news had reached those towns.[24]

A Chappe semaphore tower near Saverne, France
A Chappe semaphore tower near Saverne, France
In 1819 Norwich Duff, a young British Naval officer, visiting Clermont-en-Argonne, walked up to the telegraph station there and engaged the signalman in conversation. Here is his note of the man's information:[25]

The pay is twenty five sous per day and he [the signalman] is obliged to be there from day light till dark, at present from half past three till half past eight; there are only two of them and for every minute a signal is left without being answered they pay five sous: this is a part of the branch which communicates with Strasburg and a message arrives there from Paris in six minutes it is here in four.[26]

— Norwich Duff
The network was reserved for government use, but an early case of wire fraud occurred in 1834 when two bankers, François and Joseph Blanc, bribed the operators at a station near Tours on the line between Paris and Bordeaux to pass Paris stock exchange information to an accomplice in Bordeaux. He would know whether the Paris market was going up or down days before the information arrived in Bordeaux via the newspapers, after which Bordeaux was sure to follow. The message could not be inserted in the telegraph directly because it would have been detected. Instead, pre-arranged deliberate errors were introduced into existing messages which were visible to an observer at Bordeaux. Tours was chosen because it was a division station where messages were purged of errors by an inspector who was privy to the secret code used and unknown to the ordinary operators. The scheme would not work if the errors were inserted prior to Tours. The operators were told whether the market was going up or down by the colour of packages (either white or grey paper wrapping) sent by mail coach, thus avoiding any evidence of misdeed being put in writing.

The scheme operated for two years until it was discovered in 1836.[27][28]

The French optical system remained in use for many years after other countries had switched to the electrical telegraph. Partly, this was due to inertia; France had the most extensive optical system and hence the most difficult to replace. But there were also arguments put forward for the superiority of the optical system. One of these was that the optical system is not so vulnerable to saboteurs as an electrical system with many miles of unguarded wire.

SAMUEL MORSE FAILED

Samuel Morse failed to sell the electrical telegraph to the French government. Eventually the advantages of the electrical telegraph of improved privacy, and all-weather and nighttime operation won out.[29] A decision was made in 1846 to replace the optical telegraph with the Foy-Breguet electrical telegraph after a successful trial on the Rouen line.

This system had a display which mimicked the look of the Chappe telegraph indicators to make it familiar to telegraph operators. Jules Guyot issued a dire warning of the consequences of what he considered to be a serious mistake. It took almost a decade before the optical telegraph was completely decommissioned. One of the last messages sent over the French semaphore was the report of the fall of Sebastopol in 1855.[30]

RBP

Sweden
A replica of an optical telegraph in Stockholm, Sweden
A replica of an optical telegraph in Stockholm, Sweden
Sweden was the second country in the world, after France, to introduce an optical telegraph network.[31] Its network became the second most extensive after France.[32]

The central station of the network was at the Katarina Church in Stockholm.[33] The system was nearly twice as fast as the French system.[citation needed] The improved speed was partly due to the Swedish control panel[34] and partly to the ease of transcribing the octal code (the French system was recorded as pictograms).[35]

The system was used primarily for reporting the arrival of ships, but was also useful in wartime for observing enemy movements and attacks.[36]

Development in Sweden.

Inspired by news of the Chappe telegraph, the Swedish inventor Abraham Niclas Edelcrantz experimented with the optical telegraph in Sweden.

He constructed a three-station experimental line in 1794 running from the royal castle in Stockholm, via Traneberg, to the grounds of Drottningholm Castle, a distance of 12 kilometres (7.5 mi).

THE FIRST DEMOSTRATION WAS ON

The first demonstration was on 1 November, when Edelcrantz sent a poem dedicated to the king on his fourteenth birthday. On 7 November the king brought Edelcrantz into his Council of Advisers with a view to building a telegraph throughout Sweden, Denmark, and Finland.[37]

Edelcrantz system technical operation.

After some initial experiments with Chappe-style indicator arms, Edelcrantz settled on a design with ten iron shutters.

Nine of these represented a 3-digit octal number and the tenth, when closed, meant the code number should be preceded by "A". This gave 1,024 codepoints which were decoded to letters, words or phrases via a codebook.[38]

THE TELEGRAPH HAS A SOFHISTICATED

CONTROL PANEL

The telegraph had a sophisticated control panel which allowed the next symbol to be prepared while waiting for the previous symbol to be repeated on the next station down the line. The control panel was connected by strings to the shutters. When ready to transmit, all the shutters were set at the same time with the press of a footpedal.[34]

The shutters were painted matt black to avoid reflection from sunlight and the frame and arms supporting the shutters were painted white or red for best contrast.[39] Around 1809 Edelcrantz introduced an updated design.

The frame around the shutters was dispensed with leaving a simpler, more visible, structure of just the arms with the indicator panels on the end of them. The "A" shutter was reduced to the same size as the other shutters and offset to one side to indicate which side was the most significant digit (whether the codepoint is read left-to-right or right-to-left is different for the two adjacent stations depending on which side they are on).[36]

This was previously indicated with a stationary indicator fixed to the side of the frame, but without a frame was no longer possible.[40]

The distance that a station could transmit depended on the size of the shutters and the power of the telescope being used to observe them. The smallest object visible to the human eye is one that subtends an angle of 40 seconds of arc, but Edelcrantz used a figure of 4 minutes of arc to account for atmospheric disturbances and imperfections of the telescope. On that basis, and with a 32X telescope, Edelcrantz specified shutter sizes ranging from 9 inches (22 cm) for a distance of 0.5 Swedish miles (5.3 km) to 54 inches (134 cm) for 3 Swedish miles (32 km).[41] These figures were for the original design with square shutters.

 The open design of 1809 had long oblong shutters which Edelcrantz thought was more visible.[42] Distances much further than these would require impractically high towers to overcome the curvature of the Earth as well as large shutters. Edelcrantz kept the distance between stations under 2 Swedish miles (21 km) except where large bodies of water made it unavoidable.[43]

The Swedish telegraph was capable of being used at night with lamps. On smaller stations lamps were placed behind the shutters so that they became visible when the shutter was opened. For larger stations, this was impractical. Instead, a separate tin box matrix with glass windows was installed below the daytime shutters.

The lamps inside the tin box could be uncovered by pulling strings in the same way the daytime shutters were operated. Windows on both sides of the box allowed the lamps to be seen by both the upstream and downstream adjacent stations.

THE CODEPOINTS USED

The codepoints used at night were the complements of the codepoints used during the day. This made the pattern of lamps in open shutters at night the same as the pattern of closed shutters in daytime.[44].

----------

FIRST NETWORK (1795-1909)

--------------

First network: 1795–1809


The first operational line, Stockholm to Vaxholm, went into service in January 1795. By 1797 there were also lines from Stockholm to Fredriksborg, and Grisslehamn via Signilsskär to Eckerö in Åland.

A short line near Göteborg to Marstrand on the west coast was installed in 1799. During the War of the Second Coalition, Britain tried to enforce a blockade against France. Concerned at the effect on their own trade, Sweden joined the Second League of Armed Neutrality in 1800.

Britain was expected to respond with an attack on one of the nordic countries in the league. To help guard against such an attack, the king ordered a telegraph link joining the systems of Sweden and Denmark.

This was the firt international telegraph connection in the world. Edelcrantz made this link between Helsingborg in Sweden and Helsingør in Denmark, across the Öresund, the narrow strait separating the two countries.

A new line along the coast from Kullaberg to Malmö, incorporating the Helsingborg link was planned in support and to provide signalling points to the Swedish fleet. Nelson's attack on the Danish fleet at Copenhagen in 1801 was reported over this link, but after Sweden failed to come to Denmark's aid it was not used again and only one station on the supporting line was ever built.[45]

In 1808 the Royal Telegraph Institution was created and Edelcrantz was made director.[46] The Telegraph Institution was put under the jurisdiction of the military, initially as part of the Royal Engineering Corps.[47] A new code was introduced to replace the 1796 codebook with 5,120 possible codepoints with many new messages.

The new codes included punishments for delinquent operators. These included an order to the operator to stand on one of the telegraph arms (code 001-721), and a message asking an adjacent station to confirm that they could see him do it (code 001-723).[48]

By 1809, the network had 50 stations over 200 km of line employing 172 people.[36] In comparison, the French system in 1823 had 650 km of line and employed over three thousand people.[31]

In 1808, the Finnish War broke out when Russia seized Finland, then part of Sweden. Åland was attacked by Russia and the telegraph stations destroyed.

The Russians were expelled in a revolt, but attacked again in 1809. The station at Signilsskär found itself behind enemy lines, but continued to signal the position of Russian troops to the retreating Swedes. After Sweden ceded Finland in the Treaty of Fredrikshamn, the east coast telegraph stations were considered superfluous and put into storage. In 1810, the plans for a south coast line were revived but were scrapped in 1811 due to financial considerations. Also in 1811, a new line from Stockholm via Arholma to Söderarm lighthouse was proposed, but also never materialised.[49] For a while, the telegraph network in Sweden was almost non-existent, with only four telegraphists employed by 1810.[50]

Rebuilding the network

REBUILDING THE NETWORK.


The post of Telegraph Inspector was created as early as 1811, but the telegraph in Sweden remained dormant until 1827 when new proposals were put forward. In 1834, the Telegraph Institution was moved to the Topographical Corps.

The Corps head, Carl Fredrik Akrell, conducted comparisons of the Swedish shutter telegraph with more recent systems from other countries. Of particular interest was the semaphore system of Charles Pasley in England which had been on trial in Karlskrona. Tests were performed between Karlskrona and Drottningskär, and, in 1835, nighttime tests between Stockholm and Fredriksborg.

Akrell concluded that the shutter telegraph was faster and easier to use, and was again adopted for fixed stations. However, Pasley's semaphore was cheaper and easier to construct, so was adopted for mobile stations. By 1836 the Swedish telegraph network had been fully restored.[47]

The network continued to expand. In 1837, the line to Vaxholm was extended to Furusund. In 1838 the Stockholm-Dalarö-Sandhamn line was extended to Landsort. The last addition came in 1854 when the Furusund line was extended to Arholma and Söderarm.[47] The conversion to electrical telegraphy was slower and more difficult than in other countries. The many stretches of open ocean needing to be crossed on the Swedish archipelagos was a major obstacle. Akrell also raised similar concerns to those in France concerning potential sabotage and vandalism of electrical lines. Akrell first proposed an experimental electrical telegraph line in 1852. For many years the network consisted of a mix of optical and electrical lines. The last optical stations were not taken out of service until 1881, the last in operation in Europe. In some places, the heliograph replaced the optical telegraph rather than the electrical telegraph.[51]}

United Kingdom.

Diagram of UK Murray six-shutter system, with shutter 6 in the horizontal position, and shutters 1-5 vertical
Diagram of UK Murray six-shutter system, with shutter 6 in the horizontal position, and shutters 1-5 vertical
In Ireland,

Richard Lovell Edgeworth returned to his earlier work in 1794, and proposed a telegraph there to warn against an anticipated French invasion; however, the proposal was not implemented. Lord George Murray, stimulated by reports of the Chappe semaphore, proposed a system of visual telegraphy to the British Admiralty in 1795.[3] He employed rectangular framework towers with six, five feet high octagonal shutters on horizontal axes that flipped between horizontal and vertical positions to signal. [52]

 The Rev. Mr Gamble also proposed two distinct five-element systems in 1795: one using five shutters, and one using five ten foot poles.[3] The British Admiralty accepted Murray's system in September 1795, and the first system was the 15 site chain from London to Deal.[53] Messages passed from London to Deal in about sixty seconds, and sixty-five sites were in use by 1808.[53]

St. Albans High Street in 1807, showing the shutter telegraph on top of the city's Clock Tower. It was on the London to Great Yarmouth line[54]
St. Albans High Street in 1807, showing the shutter telegraph on top of the city's Clock Tower. It was on the London to Great Yarmouth line[54]
Chains of Murray's shutter telegraph stations were built along the following routes: London—Deal and Sheerness, London—Great Yarmouth and London—Portsmouth and Plymouth.[54] The shutter stations were temporary wooden huts, and at the conclusion of the Napoleonic wars they were no longer necessary, and were closed down by the Admiralty in March 1816.[55]

Following the Battle of Trafalgar, the news was transmitted to London by frigate to Falmouth, from where the captain brought the dispatches to London by coach along what became known as the Trafalgar Way; the journey took 38 hours. This delay prompted the Admiralty to investigate further.

A replacement semaphore system was sought, and of the many ideas and devices put forward the Admiralty chose the simpler semaphore system invented by Sir Home Popham.[2][3] A Popham semaphore was a single fixed vertical 30 foot pole, with two movable 8 foot arms attached to the pole by horizontal pivots at their ends, one arm at the top of the pole, and the other arm at the middle of the pole.[1][2] The signals of the Popham semaphore were found to be much more visible than those of the Murray shutter telegraph.[1] Popham's 2-arm semaphore was modeled after the 3-arm Depillon French semaphore.[1] An experimental semaphore line between the Admiralty and Chatham was installed in July 1816, and its success helped to confirm the choice.[55]

Subsequently, the Admiralty decided to establish a permanent link to Portsmouth and built a chain of semaphore stations. Work started in December 1820[55] with Popham's equipment replaced with another two-arm system invented by Charles Pasley. Each of the arms of Pasley's system could take on one of eight positions and thus had more codepoints than Popham's.[56] In good conditions messages were sent from London to Portsmouth in less than eight minutes.[57] The line was operational from 1822 until 1847, when the railway and electric telegraph provided a better means of communication. The semaphore line did not use the same locations as the shutter chain, but followed almost the same route with 15 stations - Admiralty (London), Chelsea Royal Hospital, Putney Heath, Coombe Warren, Coopers Hill, Chatley Heath, Pewley Hill, Bannicle Hill, Haste Hill (Haslemere), Holder Hill, (Midhurst), Beacon Hill, Compton Down, Camp Down, Lumps Fort (Southsea), and Portsmouth Dockyard. The semaphore tower at Chatley Heath, which replaced the Netley Heath station of the shutter telegraph, has been restored by Surrey County Council and is open to the public.

The Board of the Port of Liverpool obtained a Private Act of Parliament to construct a chain of Popham optical semaphore stations from Liverpool—Holyhead in 1825.[58] The system was designed and part-owned by Barnard L. Watson, a reserve marine officer and came into service in 1827. The line is possibly the only example of an optical telegraph built entirely for commercial purposes. It was used so that observers at Holyhead could report incoming ships to the Port of Liverpool and trading could begin in the cargo being carried before the ship docked. The line was kept in operation until 1860 when a railway line and associated electrical telegraph made it redundant.[59][60]:181–183 Many of the prominences on which the towers were built ('telegraph hills') are known as Telegraph Hill to this day.

Other countries
Optical telegraph in the harbour of Bremerhaven, Germany
Optical telegraph in the harbour of Bremerhaven, Germany
Once it had proved its success, the optical telegraph was imitated in many other countries, especially after it was used by Napoleon to coordinate his empire and army. In most of these countries, the postal authorities operated the semaphore lines. Many national services adopted signaling systems different from the Chappe system. For example, the UK and Sweden adopted systems of shuttered panels (in contradiction to the Chappe brothers' contention that angled rods are more visible). In some cases, new systems were adopted because they were thought to be improvements. But many countries pursued their own, often inferior, designs for reasons of national pride or not wanting to copy from rivals and enemies.[61]

British empire
In Ireland R.L. Edgeworth was to develop an optical telegraph based on a triangle pointer, measuring up to 16 feet in height. Following a number of years promoting his system, he was to get admiralty approval and engaged in its construction during 1803-4. The completed system ran from Dublin to Galway and was to act as a rapid warning system in case of French invasion of the west coast of Ireland. Despite its success in operation, the receding threat of French invasion was to see the system disestablished in 1804.[62]

In Canada, Prince Edward, Duke of Kent established the first semaphore line in North America. In operation by 1800, it ran between the city of Halifax and the town of Annapolis in Nova Scotia, and across the Bay of Fundy to Saint John and Fredericton in New Brunswick. In addition to providing information on approaching ships, the Duke used the system to relay military commands, especially as they related to troop discipline. The Duke had envisioned the line reaching as far as the British garrison at Quebec City; however, the many hills and coastal fog meant the towers needed to be placed relatively close together to ensure visibility. The required labour to build and continually man so many stations taxed the already stretched-thin British military and there is doubt the New Brunswick line was ever in operation. With the exception of the towers around Halifax harbour, the system was abandoned shortly after the Duke's departure in August 1800.[63][64]

Ta' Kenuna Tower, a semaphore tower in Nadur, Gozo, Malta, built by the British in 1848
Ta' Kenuna Tower, a semaphore tower in Nadur, Gozo, Malta, built by the British in 1848
The British military authorities began to consider installing a semaphore line in Malta in the early 1840s. Initially, it was planned that semaphore stations be established on the bell towers and domes of the island's churches, but the religious authorities rejected the proposal. Due to this, in 1848 new semaphore towers were constructed at Għargħur and Għaxaq on the main island, and another was built at Ta' Kenuna on Gozo. Further stations were established at the Governor's Palace, Selmun Palace and the Giordan Lighthouse. Each station was manned by the Royal Engineers.[65]

The Semaphore Tower at Khatirbazar, Andul in Howrah district of West Bengal
The Semaphore Tower at Khatirbazar, Andul in Howrah district of West Bengal
In India, semaphore towers were introduced in 1810. A series of towers were built between Fort William, Kolkata to Chunar Fort near Varanasi.The towers in the plains were 75–80 ft (23–24 m) tall and those in the hills were 40–50 ft (12–15 m) tall, and were built at an interval of about 13 km (8.1 mi).[66] The last stationary semaphore link in regular service was in Sweden, connecting an island with a mainland telegraph line. It went out of service in 1880.

Iberia
In Portugal, the British forces fighting Napoleon in Portugal soon found that the Portuguese Army had already a very capable semaphore terrestrial system working since 1806, giving the Duke of Wellington a decisive advantage in intelligence. The innovative Portuguese telegraphs, designed by Francisco Ciera, a mathematician, were of 3 types: 3 shutters, 3 balls and 1 pointer/moveable arm (the first for longer distances, the other two for short) and with the advantage of all having only 6 significant positions. He also wrote the code book "Táboas Telegráphicas", with 1554 entries from 1 to 6666 (1 to 6, 11 to 16,... 61 to 66, 111 to 116,... etc.), the same for the 3 systems. Since early 1810 the network was operated by "Corpo Telegráfico", the first Portuguese military Signal Corps.

In Spain, the engineer Agustín de Betancourt developed his own system which was adopted by that state. This system was considered by many experts in Europe better than Chappe's, even in France.[citation needed] Spain was spanned by an extensive semaphore telegraph network in the 1840s and 1850s.[67] The three main semaphore lines radiated from Madrid.[67][68] The first ran north to Irun on the Atlantic coast at the French border. The second ran west to the Mediterranean, then north along the coast through Barcelona to the French border. The third ran south to Cadiz on the Atlantic coast. These lines served many other Spanish cities, including: Aranjuez, Badajoz, Burgos, Castellon, Ciudad Real, Córdoba, Cuenca, Gerona, Pamplona, San Sebastian, Seville, Tarancon, Taragona, Toledo, Valladolid, Valencia, Vitoria and Zaragoza.[68]

Others
In 1801, the Danish post office installed a semaphore line across the Great Belt strait, Storebæltstelegrafen, between islands Funen and Zealand with stations at Nyborg on Funen, on the small island Sprogø in the middle of the strait, and at Korsør on Zealand. It was in use until 1865.[69]

Main article: Prussian semaphore system

In the Kingdom of Prussia, Frederick William III ordered the construction of an experimental line in 1819, but due to the procrastination of defence minister Karl von Hake, nothing happened until 1830 when a short three-station line between Berlin and Potsdam was built. The design was based on the Swedish telegraph with the number of shutters increased to twelve.[70] Postrat Carl Pistor proposed instead a semaphore system based on Watson's design in England. An operational line of this design running Berlin-Magdeburg-Dortmund-Köln-Bonn-Koblenz was completed in 1833. The line employed about 200 people, comparable to Sweden, but no network ever developed and no more official lines were built. The line was decommissioned in 1849 in favour of an electrical line.[71]

Although there were no more government sponsored official lines, there was some private enterprise. Johann Ludwig Schmidt opened a commercial line from Hamburg to Cuxhaven in 1837. In 1847, Schmidt opened a second line from Bremen to Bremerhaven. These lines were used for reporting the arrival of commercial ships. The two lines were later linked with three additional stations to create possibly the only private telegraph network in the optical telegraph era.[72] The telegraph inspector for this network was Friedrich Clemens Gerke, who would later move to the Hamburg-Cuxhaven electrical telegraph line and develop what became the International Morse Code.[73] The Hamburg line went out of use in 1850, and the Bremen line in 1852.[74]

Former optical telegraph tower on the Winter Palace in Saint Petersburg, Russia
Former optical telegraph tower on the Winter Palace in Saint Petersburg, Russia
In Russia, Tsar Nicolas I inaugurated a line between Moscow and Warsaw of 1,200 kilometres (750 mi) length in 1833; it needed 220 stations manned by 1,320 operators. The stations were noted to be unused and decaying in 1859, so the line was probably abandoned long before this.[35]

In the United States, the first optical telegraph was built by Jonathan Grout in 1804 but ceased operation in 1807. This 104-kilometre (65 mi) line between Martha's Vineyard with Boston transmitted shipping news. An optical telegraph system linking Philadelphia and the mouth of the Delaware Bay was in place by 1809 and had a similar purpose; a second line to New York City was operational by 1834, when its Philadelphia terminus was moved to the tower of the Merchants Exchange. One of the principal hills in San Francisco, California is also named "Telegraph Hill", after the semaphore telegraph which was established there in 1849 to signal the arrival of ships into San Francisco Bay.

First data networks
The optical telegraphs put in place at the turn of the 18th/19th centuries were the first examples of data networks.[75] Chappe and Edelcrantz independently invented many features that are now commonplace in modern networks, but were then revolutionary and essential to the smooth running of the systems. These features included control characters, routing, error control, flow control, message priority and symbol rate control. Edelcrantz documented the meaning and usage of all his control codes from the start in 1794. The details of the early Chappe system is not known precisely; the first operating instructions to survive date to 1809 and the French system is not as fully explained as the Swedish.[76]

Some of the features of these systems are considered advanced in modern practice and have been recently reinvented. An example of this is the error control codepoint 707 in the Edelcrantz code. This was used to request the repeat of a specified recent symbol. The 707 was followed by two symbols identifying the row and column in the current page of the logbook that it was required to repeat. This is an example of a selective repeat and is more efficient than the simple go back n strategy used on many modern networks.[77] This was a later addition, both Endelcantz (codepoint 272), and Chappe (codepoint 2H6)[note 1] initially used only a simple "erase last character" for error control, taken directly from Hooke's 1684 proposal.[78]

Routing in the French system was almost permanently fixed; only Paris and the station at the remote end of a line was allowed to initiate a message. The early Swedish system was more flexible, having the ability to set up message connections between arbitrary stations. Similar to modern networks, the initialisation request contained the identification of the requesting and target station. The request was acknowledged by the target station by sending the complement of the code received. This protocol is unique with no modern equivalent.[77] This facility was removed from the codebook in the revision of 1808. After this, only Stockholm would normally initiate messages with other stations waiting to be polled.[77]

The Prussian system required the Coblenz station (at the end of the line) to send a "no news" message (or a real message if there was one pending) back to Berlin on the hour, every hour. Intermediate stations could only pass messages by replacing the "no news" message with their traffic. On arrival in Berlin, the "no news" message was returned to Coblenz with the same procedure. This can be considered an early example of a token ring system. This arrangement required accurate clock synchronisation at all the stations. A synchronisation signal was sent out from Berlin for this purpose every three days.[79]

Another feature that would be considered advanced in a modern electronic system is the dynamic changing of transmission rates. Edelcrantz had codepoints for faster (770) and slower (077). Chappe also had this feature.

In popular culture
A cartoon strip of "Monsieur Pencil" (1831) by Rodolphe Töpffer
A cartoon strip of "Monsieur Pencil" (1831) by Rodolphe Töpffer
By the mid 19th century, the optical telegraph was well known enough to be referenced in popular works without special explanation. The Chappe telegraph appeared in contemporary fiction and comic strips. In "Mister Pencil" (1831), comic strip by Rodolphe Töpffer, a dog fallen on a Chappe telegraph's arm and its master attempting to help provoke an international crisis by involuntarily transmitting disturbing messages. In "Lucien Leuwen" (1834), Stendhal pictures a power struggle between Lucien Leuwen and the prefect M. de Séranville with the telegraph's director M. Lamorte. In Chapter 60 ("The Telegraph") of Alexandre Dumas' The Count of Monte Cristo (1844), the title character describes with fascination the semaphore line's moving arms. "I had at times seen rise at the end of a road, on a hillock and in the bright light of the sun, these black folding arms looking like the legs of an immense beetle."[80] He later bribes a semaphore operator to relay a false message in order to manipulate the French financial market. Dumas also describes in details the functioning of a Chappe telegraph line. In Hector Malot's novel Romain Kalbris (1869), one of the characters, a girl named Dielette, describes her home in Paris as "...next to a church near which there was a clock tower. On top of the tower there were two large black arms, moving all day this way and that. [I was told later] that this was Saint-Eustache church and that these large black arms were a telegraph."[81]

----------




-----------

EL SEMAFORO,

1l Electrico o ELECTRONICO.

2. Activado por:

ELECTRICIDAD,

-POR LA LUZ ELECTRICA-

 es el sistema

SEMIOTICO O SEMIOLOGICO

mas importante INVENTADO EN

1.TODA LA HISTORIA DE LA HUMANIDAD,

2. PARA PREVENIR MUERTES, MUTILACIONES,

AMPUGACIONES, LUTO, EN CALLES Y

CARRETERAS... de todo el mundo...

3. DISENADO PARA RESOLVER UN

PROBLEMA :

3.1 PRACTICO.

3.2. DE LA VIDA COTIDIANA.

3.3. DE CUALQUIER SER HUMANO,

EN LA CALLE, FUERA DE SU CASA U

HOGAR...

3.3.1. PEATONES, PEATONAS....

DE TODAS LAS EDADES...

DE TODAS LAS CLASES SOCIALES

3.3.2. CICLISTAS.

DE TODAS LAS EDADES.

DE TODAS LAS CLASES SOCIALES

DE TODAS LAS RELIGIONES

DE TODOS LOS PARTIDOS POLITICOS...

3.2.3. CICLISTAS...

3.2.4. CHOFERES, CONDUCTORAS de

VEHICULOS CON O SIN LICENCIA DE

CONDUCIR....

EN VEHICULOS DE 4 RUEDAS,

PUBLICOS.

PRIVADOS....

3.2.5. CHOFERES O CONDUCTORES DE

VEHICULOS DE MOTOR DE 8 RUEDAS...

PUBLICOS,

PRIVADOS

DE CARGA.

DE COMERCIO.

DE AGRICULTURA.

DE GANADERIA.

DE AGROINDUSTRIA.

DE IMPORTACION.

DE EXPORTACION.

DE INDUSTRIA.

DEL GOBIERNO.

DEL ESTADO DOMINICANO.

DE LA ADMINISTRACION PUBLICA PROFESIONAL

DEL ESTADO DOMINICANO.

DE LA BUROCRACIA PROFESIONAL DOMINICANA

DE LAS ORGANIZACIONES DE LA SOCIEDAD

CIVIL.

DE LAS MYPIMES DOMINICANAS.

DE LAS GRANDES EMPRESAS E INDUSTRIAS

DOMINICANAS...

3.2.7. CHOFERES Y CONDUCTORES DE

VEHICULOS DE MOTOR DE 12 RUEDAS...

3.2.8 CHOFERES Y CONDUCTORAS DE

VEHICULOS DE MOTOR DE 16 RUEDAS...

3.2. 9 CHOFERES Y CONDUCTORAS DE

VEHICULOS DE MOTOR DE 20 RUEDAS...

3.2.10. CHOFERES Y CONDUCTORAS DE

VEHICULOS DE MOTOR DE 24 RUEDAS....

3.2.11. CHOFERES Y CONDUCTORAS DE

DE VEHICUOS DE MOTOR DE 30 RUEDAS...

3.2.12. CHOFERES Y CONDUCTORAS DE

VEHICULOS DE MOTOR:

TERRESTRES DE 36 RUEDAS O MAS...

1. EL SEMAFORO NO TIENE: PREJUICIOS.

2. EL SEMAFORNO, NO : DISCRIMINA...

ESTA EN LA ESQUINA CON UNA SOLA

FUNCION: GERENCIAL, ADMINISTRATIVA

Y MEDICO-PREVENTIVA....

1. Rara salvar la VIDA ....HUMANA...

2.. NO LOS VEHICULOS...

3. NO LAS INVERSIONES EN :

VEHICULOS DE MOTOR....

4.A LAS PERSONAS HUMANAS....

4.1 QUE CONDUCEN VEHICULOS DE MOTOR.

4.2. QUE VIAJAN EN CALIDAD O STATUS

DE:

PASAJEROS, PASAJERAS...

5. Pero no se creo por UN INTENTO

DE NINGUN TEORICO, de hacerse :

1. FAMOSO .

2. RICO...

6. Sino para revolver UN PROBLEMA

PRACTICO, DE LA CIUDAD....

POR QUE SE TUVO QUE INVENTAR:

EL SEMAFORO ELECTRICO, PARA

QUE LAS CIUDADES,  NO SE VOLVIERAN

UNA CARNICERIA, DE MIEMBROS Y

CUERPOS HUMANOS, APLASTADOS,

DESFIGURADOS,

-JODIDOS, mutilados, amputados-

1.  PARA SIEMPRE:

2. CON UNA DISCAPACIDAD o diversidad

funcional:

no congenita?

1. SE HABIA INVENTADO UNA MAQUINA

llamada :

AUTOMOVIL...unos ANOS, ANTES...

-----------
Flag semaphore originated in 1866

 as a handheld version of the optical telegraph

system of Home Riggs Popham used on land,

 and its later improvement by Charles Pasley.

The land system consisted of lines of fixed

stations (substantial buildings) with two large,

moveable arms pivoted on an upright membet.

Flag semaphore - Wikipedia
https://en.wikipedia.org › wiki › Flag_semaphore

--------
People also ask.

When was semaphore invented?

What was semaphore used for?

What are the semaphore signals?

Why are semaphore flags used?

------
Semaphore Flag History | Flagpoles Etc.
https://flagpolesetc.com › blog › semaphore-flag-history
Mar 2, 2017 - Semaphore flag is the term given to a method of communicating with flags. The person holding the flags position them in specific positions to ...

-----
Semaphore | communications | Britannica
https://www.britannica.com › technology › semaphore
Semaphore, method of visual signaling, usually by means of flags or lights. Before ... See Article History ... semaphore flag signals Encyclopædia Britannica, Inc.

--------

Optical telegraph - Wikipedia
https://en.wikipedia.org › wiki › Optical_telegraph
An optical telegraph is a line of stations, typically towers, for the purpose of conveying textual information by means of visual signals. There are two main types of such systems; the semaphore telegraph which ... 3.1 Development in France; 3.2 Chappe system technical operation; 3.3 History. 4 Sweden. 4.1 Development in ...
‎France · ‎Sweden · ‎United Kingdom · ‎Other countries.

----

Flag semaphore - Wikipedia
https://en.wikipedia.org › wiki › Flag_semaphore
Jump to Origin - Flag semaphore originated in 1866 as a handheld version of the optical telegraph system of Home Riggs Popham used on land, and its later improvement by Charles Pasley. The land system consisted of lines of fixed stations (substantial buildings) with two large, moveable arms pivoted on an upright membet.
‎Contemporary semaphore ... · ‎Japanese semaphore · ‎Practical use in ...

-----
A Brief History of Semaphore / Signal It / Dancing the Key ...
artsonline.tki.org.nz › ... › Dancing the Key Competencies › Signal It
A Brief History of Semaphore ... Semaphore is a visual method of communication that involves signalling the alphabet or numbers by the handholding of 2 flags ...

----

How Napoleon's semaphore telegraph changed the world - BBC
https://www.bbc.com › news › magazine-22909590
Jun 17, 2013 - Napoleonic semaphore was the world's first telegraph network, carrying messages across 18th Century ... Share this story About sharing.

-----
How the Telegraph Went From Semaphore to Communication ...
https://www.smithsonianmag.com › arts-culture › how-the-telegraph-went-...
Oct 11, 2013 - The Chappe semaphore telegraph consisted of a series of towers topped with three ... the hard work of cranking their own semaphore panels into place to relay the message further down the line. ....

-----

 Famous Scientists History.
Images for Semaphore. History
Guided Search Filters
exeter hotelflagmorse codealphabetcommunicationhistoricalmountinstructionsignalpositionstationprintabletelegraphsymbolpaintinggalleryclaude chappemaritime flaghydraulic maritimesa photo

-------

The STORY of the SEMAPHORE
https://www.tandfonline.com › doi › pdf
by HP Mead - ‎1933

V. ARious factors seem to contribute to the need of a record of the history of the British semaphore. In the first place, questions are continually arising as to who ...

---------

The Origin of the Railway Semaphore - Personal Web Sites...
https://mysite.du.edu › ~jcalvert › railway › semaphor › semhist
Apr 15, 2000 - To appreciate the origin of the railway semaphore, it is necessary to say something about optical telegraphs. The invention of good telescopes ...
Searches related to Semaphore. History
flag semaphore

semaphore communication

semaphore flags translator

semaphore signal

navy semaphore flags

semaphore numbers

semaphore flags for sale

semaphore cipher

----------

POR QUE HUBO QUE INVENTAR:

EL SEMAFORO ELECTRICO, EN LAS

CIUDADES NORTEAMERICANAS, EN

1914?

-------------

Por un LOCO,  llamado HENRY FORD,

UN LOCO INACEPTADO, POR LA COMUNIDAD...

Por eso toda la gente BIENPENSANTE,

RACIONAL, de su epoca:

LO OBLIGARON A MUDARSE TRES VECES

DE COMUNIDAD, llevandolo como un Cristo

al AYUNTAMIENTO A LA MUNICIPALIDAD

AL MUNICIPAL HALL...

1. PRIMERO CON LA DENUNCIA, de que

ese hombre LOCO, estaba inventando una:

MAQUINA QUE HACIA RUIDO, mucho

RUIDO y le causaba STRESS, al ganado

y a los pollos, EN COMUNIDADES RURALES,

donde la gente vivia EN SILENCIO de la :

avicultura y de la genaderia...

SE TUVO QUE MUDAR ESE LOCO:

INVENTOR...

Cuando el proyecto de INGENIERIA

AUTOMOTRIZ, iba mas avanzado...

EN LA SEGUNDA COMUNIDAD...

LA COMUNIDAD ENTERA SE REUNIO:

VOLVIERON A DENUNCIARLO  y a llevarlo

como un Cristo, al AYUNTAMIENTO...

Porque decian, SOBRE TODO LOS HOMBRES

DE LA COMUNIDAD, que ese loco, habia

hecho UNA MAQUINA, que ponia la vida

de las PERSONAS EN PELIGRO

-en un mundo sin carreteras, ni avenidas-

SALIA DE CUALQUIER MAIZAL, con

maquina INFERNAL, poniendo en peligro

a todas las PERSONAS Y FAMILIAS que

encontraba a su paso...

SE TUVO QUE MUDAR...

1. LA INCOMPRENSION es la reaccion

natural a todos LOS INVENTOS, en la

Historia de la Humanidad....

2. PERO HENRY FORD, NO SE ACORDO:

2.1. NO solo invento EL AUTOMIVIL.

2.2. SINO ALGO MAS IMPORTANTE,

PARA LA INDUSTRIALIZACION EN

TODO EL PLANETA TIERRA:

1. LA CADENA DE MONTAJE INDUSTRIAL.

2.LA CADENA DE PRODUCCION INDUSTRIAL,

SEMI-AUTOMATIZADA.

LA PROLIFERACION DE AUTOMOVILES,

MANEJADOS POR CAMPESINOS Y POR

CAMPESINAS ANALFABETAS, en los

ESTADOS UNIDOS DE AMERICA, fue el

principal LEIVMOTIV, LA MUSA, del inventor

DEL SEMAFORO....

UNO DE LOS PRIMEROS INVENTOS DE LA

INDUSTRIA TELECOMUNICACIONAL, de uso

o aplicaciones MASIVAS, en todas las ciudades

de los ESTADOS UNIDOS DE AMERICA, desde

el ano :

1914.

Es un invento FACIL DE COMPRENDER:

Tres luces.

LA ROJA. Indica, denota: PELIGRO. PARE.

LA AMARILLA. Precaucion, MEJOR DETENGASE.

LA VERDE: VIA FRANCA, PASE....

NO HABIA QUE SABER LEER NI ESCRIBIR

TODOS ESTABAN:

TELECOMUNICADOS.

COMUNICADOS EN LA DISTANCIA.

Ahora, en 2019, la Organizacion Mundial de

la Salud, indica que a nivel mundial, en los

5 continentes;

EL PROBLEMA PRIORITARIO DE SALUD

PUBLICA SON LAS MUERTES :

1. EN CARRETERAS.

2. LOS ACCIDENTES DE TRANSITO.

Pero los que mueren hasta sumar :

3. 3 millones de seres humanos...

NO SON ADULTOS,

NO SON ADULTOS-CONTEMPORANEOS,

NO SON ENVEJECIENTES,

NO SON ANCIANOS...

EN TALES ACCIDENTES FATALES,

SINO:

NINOS Y NINAS DE : 5 A 18 ANOS

DE EDAD...

CONSTITUYENDOSE EN TALES TIPOS

DE MUERTES, en una amenaza para

LA EXISTENCIA DE LA NINEZ, en el mundo...

que mata cada ano...

MAS NINOS Y NINAS QUE TODAS LAS

GUERRAS, EN EL PLANETA...

MAS NINOS Y NINAS QUE EL HAMBRE...

MAS NINOS Y NINAS QUE LA DESNUTRICION

INFANTIL....

MAS NINOS Y NINAS QUE LA DIARREA,

LA DESINTERIA, LA MALARIA, JUNTAS...

El segundo grupo de victimas fatales,

de los ACCIDENTES DE CARRETERA

O DE TRANSITO, son las personas JOVENES

-DE MENOS DE 30 ANOS DE EDAD...-

ADULTOS JOVENES, DE AMBOS SEXOS

ENTRE LOS:

18 Y LOS 29 ANOS DE EDAD...

-----------

EL SEMAFORO, como administrador electronico

de la CIRCULACION VIAL, es un:

EDUCADOR ELECTRONICO....

CAPAZ DE AHORRAR a cada ciudad o

municipalidad que los IMPORTA desde

ESTADOS UNIDOS DE AMERICA,

millones de dolares, ANUALES, en :

1. MOVILIZACION DE LA INFRAESTRUCTURA

DE MEDICINA EMERGENCIOLOGICA, del :

911.

2. EL SEMAFORO PREVIENE: ACCIDENTES

Y MUERTES....

3. EL SEMAFORO NO ES MEDICO, pero :

SALVA VIDAS...

4. EL SEMAFORO NO ES ADMINISTRADOR:

Pero administra los flujos VEHICULARES...

PERO NO SOLO LOS FLUJOS VEHICULARES

GRANDES de 4 o mas RUEDAS....

LOS QUE MUEREN EN ACCIDENTES DE

CARRETERA, EN TODO EL MUNDO, no

solo son conductores de carros, patanas,

SINO QUE EL 54 % segun LA OMS, en 2019,

son:

1. MOTOCICLISTAS...

Deliveries.

Motoconchos.

Motociclistas recreativos.

2.PEATONES

2.1 DE TODOS LOS GRUPOS DE

EDAD...

2.2. DE TODAS LAS CLASES SOCIALES...

3. CICLISTAS.

3.1. DE TODOS LOS GRUPOS DE EDAD.

3.2. DE TODAS LAS CLASES SOCIALES.

Yoe F. Santos/CCIAV.

Talents, Criticism, Friendship!

Salut, Polis, Ecumene!

(1959-2019)

---------------
Flag semaphore
From Wikipedia, the free encyclopedia
Jump to navigationJump to search
"Semaphore" redirects here. For other uses, see Semaphore (disambiguation).

A US Navy crewman signals the letter 'U' using flag semaphore during an underway replenishment exercise (2005)
Flag semaphore (from the Greek σῆμα, sema, meaning sign and φέρω, phero, meaning to bear; altogether the sign-bearer) is the telegraphy system conveying information at a distance by means of visual signals with hand-held flags, rods, disks, paddles, or occasionally bare or gloved hands. Information is encoded by the position of the flags; it is read when the flag is in a fixed position. Semaphores were adopted and widely used (with hand-held flags replacing the mechanical arms of shutter semaphores) in the maritime world in the 19th century.[citation needed] It is still used during underway replenishment at sea and is acceptable for emergency communication in daylight or using lighted wands instead of flags, at night.[citation needed]

Contents
1 Contemporary semaphore flag system
1.1 Characters
2 Origin
3 Japanese semaphore
4 Practical use in communication
5 See also
6 References
7 External links
Contemporary semaphore flag system
For history, see Semaphore line § History.
The current flag semaphore system uses two short poles with square flags, which a signal person holds in different positions to signal letters of the alphabet and numbers. The signalperson holds one pole in each hand, and extends each arm in one of eight possible directions. Except for in the rest position, the flags do not overlap. The flags are colored differently based on whether the signals are sent by sea or by land. At sea, the flags are colored red and yellow (the Oscar flag), while on land, they are white and blue (the Papa flag). Flags are not required; their purpose is to make the characters more obvious.[citation needed]

Characters
The following 30 semaphore characters are presented as they would appear when facing the signalperson:

A or 1



B or 2



C or 3
Acknowledge / Correct



D or 4



E or 5
Error (if signaled 8 times)



F or 6



G or 7



H or 8



I or 9



J
Letters to follow



K or 0



L



M



N



O



P



Q



R



S



T



U



V



W



X



Y



Z



Rest / Space



Numerals (#)



Error / Attention



Cancel / Annul
Disregard previous signal

Numbers can be signaled by first signaling "Numerals". Letters can be signaled by first signaling "J".

The sender uses the "Attention" signal to request permission to begin a transmission. The receiver uses a "Ready to receive" signal not shown above to grant permission to begin the transmission. The receiver raises both flags vertical overhead and then drops them to the rest position, once only, to grant permission to send. The sender ends the transmission with the "Ready to receive" signal. The receiver can reply with the "Attention" signal. At this point, sender and receiver change places.

Origin
Flag semaphore originated in 1866 as a handheld version of the optical telegraph system of Home Riggs Popham used on land, and its later improvement by Charles Pasley. The land system consisted of lines of fixed stations (substantial buildings) with two large, moveable arms pivoted on an upright membet. Such a system was inconvenient to install on board a ship. Flag semaphore provided an easy method of communicating ship-to-ship or ship-to-shore when the distances were not too great. Although based on the optical telegraph, by the time flag semaphore was introduced the optical telegraph had been entirely replaced by the electrical telegraph some years previously.[1]

Japanese semaphore

The combination used for オ ("O")
The Japanese merchant marine and armed services have adapted the flag semaphore system to the Japanese language.[2] Because their writing system involves a syllabary of about twice the number of characters in the Latin alphabet, most characters take two displays of the flags to complete; others need three and a few only one. The flags are specified as a solid white square for the left hand and a solid red one for the right. The display motions chosen are not like the "rotary dial" system used for the Latin alphabet letters and numbers; rather, the displays represent the angles of the brush strokes used in writing in the katakana syllabary and in the order drawn. For example, the character for "O" [オ], which is drawn first with a horizontal line from left to right, then a vertical one from top to bottom, and finally a slant between the two; follows that form and order of the arm extensions. It is the right arm, holding the red flag, which moves as a pen would, but in mirror image so that the observer sees the pattern normally. As in telegraphy, the katakana syllabary is the one used to write down the messages as they are received. Also, the Japanese system presents the number 0 by moving flags in a circle, and those from 1 through 9 using a sort of the "rotary dial" system, but different from that used for European languages.

Japanese flag signals with the associated kana
– k s t n h m y r w
a Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 3.svg
あ ア Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 3.svg
か カ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 12.svg
さ サ Japanese Semaphore Basic Stroke 11.svgJapanese Semaphore Basic Stroke 5.svg
た タ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 3.svg
な ナ Japanese Semaphore Basic Stroke 10.svg
は ハ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 5.svg
ま マ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 4.svg
や ヤ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 9.svg
ら ラ Japanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 9.svg
わ ワ
i Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 2.svg
い イ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 2.svg
き キ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 7.svg
し シ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Reversed Basic Stroke 2.svg
ち チ Japanese Semaphore Basic Stroke 6.svg
に ニ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 7.svg
ひ ヒ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 1.svg
み ミ * Japanese Semaphore Basic Stroke 12.svg
り リ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 12.svg
ゐ ヰ
u Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 9.svg
う ウ Japanese Semaphore Basic Stroke 11.svg
く ク Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 5.svg
す ス Japanese Semaphore Basic Stroke 12.svgJapanese Semaphore Basic Stroke 3.svg
つ ツ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 4.svg
ぬ ヌ Japanese Semaphore Basic Stroke 9.svg
ふ フ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 5.svg
む ム Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 1.svg
ゆ ユ Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 7.svg
る ル *
e Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Reversed Basic Stroke 2.svgJapanese Semaphore Basic Stroke 1.svg
え エ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 3.svg
け ケ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 7.svg
せ セ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 3.svg
て テ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 1.svg
ね ネ Japanese Semaphore Basic Stroke 4.svg
へ ヘ Japanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 5.svg
め メ * Japanese Semaphore Basic Stroke 7.svg
れ レ Japanese Semaphore Basic Stroke 9.svgJapanese Semaphore Basic Stroke 3.svgJapanese Semaphore Basic Stroke 1.svg
ゑ ヱ
o Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 3.svg
お オ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 1.svg
こ コ Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 3.svg
そ ソ Japanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 5.svg
と ト Japanese Semaphore Basic Stroke 3.svg
の ノ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 2.svgJapanese Semaphore Basic Stroke 10.svg
ほ ホ Japanese Semaphore Basic Stroke 6.svgJapanese Semaphore Basic Stroke 7.svg
も モ Japanese Semaphore Basic Stroke 8.svgJapanese Semaphore Basic Stroke 6.svg
よ ヨ Japanese Semaphore Basic Stroke 7.svgJapanese Semaphore Basic Stroke 8.svg
ろ ロ Japanese Semaphore Basic Stroke 1.svgJapanese Semaphore Basic Stroke 9.svg
を ヲ
'n
Japanese Semaphore Basic Stroke 5.svgJapanese Semaphore Basic Stroke 1.svg
ん ン
[2]
Practical use in communication
Semaphore flags are also sometimes used as means of communication in the mountains where oral or electronic communication is difficult to perform. Although they do not carry flags, the Royal Canadian Mounted Police officers have used hand semaphore in this manner. Some surf-side rescue companies, such as the Ocean City, Maryland Beach Patrol, use semaphore flags to communicate between lifeguards.[3] The letters of the flag semaphore are also a common artistic motif. One enduring example is the peace symbol, adopted by the Campaign for Nuclear Disarmament in 1958 from the original logo created by a commercial artist named Gerald Holtom from Twickenham, London.[4] Holtom designed the logo for use on a protest march on the Atomic Weapons Establishment at Aldermaston, near Newbury, England. On 4 April 1958, the march left Trafalgar Square for rural Berkshire, carrying Ban the Bomb placards made by Holtom's children making it the first use of the symbol. Originally, it was purple and white and signified a combination of the semaphoric letters N and D, standing for "nuclear disarmament," circumscribed by a circle.[5]

The album cover for the Beatles' 1965 album Help! was to have portrayed the four band members spelling "help" in semaphore, but the result was deemed aesthetically unpleasing, and their arms were instead positioned in a meaningless but aesthetically pleasing arrangement.[6] Along with Morse code, flag semaphore is currently used by the Navy and also continues to be a subject of study and training for young people of Boy Scouts. In a satirical nod to the flag semaphore's enduring use into the age of the Internet, on April Fools' Day 2007 the Internet Engineering Task Force standards organization outlined the Semaphore Flag Signaling System, a method of transmitting Internet traffic via a chain of flag semaphore operators.[7] The second episode in the second series of Monty Python's Flying Circus depicted famous stories retold using various communication systems, including Wuthering Heights in semaphore.

See also
Flag signals
Heliograph
International Code of Signals
Railway signalling
Aircraft marshalling
Semaphore line
Signal lamp
Substitute flag
Traffic guard
References
 Signals at Sea, Information sheet no 104, Library and Information Services, The National Museum: Royal Navy: Portsmouth, accessed and archived 26 October 2019.
 "The Flag Signalling System in Japan". 22 July 2011. Archived from the original on 22 July 2011. Retrieved 10 October 2013.
 "Ocean City Beach Patrol Semaphore Alphabet" (PDF). Oceancitymd.gov.
 Bayley, Stephen (6 April 2008). "Fifty years on, the CND logo is the ultimate design for life". The Guardian. London. Retrieved 6 April 2008.
 Kathryn Westcott (20 March 2008). "World's best-known protest symbol turns 50". BBC News. He [Gerald Holtom] considered using a Christian cross motif but, instead, settled on using letters from the semaphore – or flag-signalling – alphabet, super-imposing N (uclear) on D (isarmament) and placing them within a circle symbolising Earth.
 Freeman, Robert (2003). The Beatles: A Private View. NY: Barnes & Noble. p. 62. ISBN 978-1-59226-176-5.
 Hofmueller, Jogi; Bachmann, Aaron; Zmoelnig, IOhannes (1 April 2007). The Transmission of IP Datagrams over the Semaphore Flag Signaling Syst em (SFSS). IETF. doi:10.17487/RFC4824. RFC 4824. Retrieved 20 March 2010.
External links
 Wikimedia Commons has media related to Flag semaphore.
Visual Signalling in the Royal Canadian Navy
Semaphore translator applet
vte
Types of writing systems
vte
Telecommunications
Categories: Encodings of JapaneseLatin-script representationsNonverbal communicationOptical communicationsSignal flagsScripts not encoded in UnicodeScoutcraft
Navigation menu
Not logged inTalkContributionsCreate accountLog inArticleTalkReadEditView historySearch
Search Wikipedia
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page
In other projects
Wikimedia Commons
Print/export
Create a book
Download as PDF
Printable version

Languages
Deutsch
Español
Français
Bahasa Indonesia
日本語
Русский
Türkçe
اردو
中文
21 more
Edit links
This page was last edited on 26 October 2019, at 22:49 (UTC).
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersStatisticsCookie statementMobile view

----------

-------

LABOR WANTS PRIDE & JOY in DOING A

1. GOOD WORK,

2. a sense of MAKING or doing

3.SOMETHING BEAUTIFUL

4.OR USEFUL

5.to be treated with DIGNITY & respect

6.AS BROTHER AND SISTER...

Thorstein Veblen (1899)

--------

CADA NINO, cada nina en el mundo,

llega a su PRIMER DIA DE CLASES,

con sus PROPIOS PROYECTOS DE :

INVESTIGACION...

1. LA FUNCION DE LA ESCUELA,

es ayudarle a CANALIZAR:

1.1. SUS SUENOS.

1.2. SUS TALENTOS....

2. LA FUNCION DEL MAESTRO O DE LA

MAESTRA EN EDUCACION INFANTIL O

PAIDOLOGICA, es :

PROPORCIONARLE A CADA NINO Y A

CADA NINA...

1. LAS HERRAMIENTAS METODOLOGICAS

para que pueda perseguir Y LOGRAR SUS

SUENOS:

1. En la vida o trayectoria ESCOLAR.

2. En la vida o trayectoria UNIVERSITARIA...

3. Pero POR SOBRE TODO:

EN LA VIDA ADULTA...

FRANCESCO TONUCCI

NACIDO NINO ANONIMO EN : 1941...

UN SOBREVIVIENTE DE LA ITALIA

del Duce:

BENITO MUSSOLINI.

UNO DE LOS NINOS HAMBREADOS DE

LA ITALIA DE LA POST-SEGUNDA GUERRA

MUNDIAL....

Un AUTOR ORIGINAL del mundo.

UN PSICO-PEDAGOGO, de fama y prestigio

mundiales...

Un ser humano LLENO DE AMOR, de ilusion,

de OPTIMISMO, de creatividad desde su :

PERSONAJE FRATO, para ayudar a los

padres y madres de FAMILIA, del mundo

A COMPRENDER MEJOR:

1. Que es la ESCUELA?

2. Que es el APRENDIZAJ INFANTIL?

3. POR QUE LOS NINOS Y NINAS, son la:

MAYOR RIQUEZA, CON QUE CUENTAN:

3.1. TODAS las familias del mundo, en los

5 continentes.

3.2. TODAS las ECONOMIAS DEL MUNDO,

en los 5 continentes, en el siglo XIX, en el siglo

XX y en el siglo XXI.

DESDE SU PROYECTO ORIGINAL:

LAS CIUDADES AMIGAS DE LOS NINOS.

-------------

MI OPINION?

Es que NO tengo OPINION.

Benjamin Franklin.

-------

UN HOMBRE es un LOCO,

HASTA QUE SUS IDEAS;

TRIUNFAN.

Mark Twain.

-----

SI NO LOGRO VER, la liberacionn del pueblo

dominicano, en vida, si muero, ....

SE QUE ESTE PUEBLO, SE LIBERARA:

CON MIS IDEAS.

JUAN EMILIO BOSCH GAVINO (1976).

CIENTIFICO TICs, de la NACION Y DE LA

REPUBLICA DOMINICANA.

-----------
EL PROGRESO SE CONSTRUYE...

TRABAJANDO...

AQUI, HAY FUTURO!

--------------

Telecomunicación.

≪ La distancia, que es el impedimento principal del progreso de la humanidad, será completamente superada, en palabra y acción. La humanidad estará unida, las guerras serán imposibles, y la paz reinará en todo el planeta. ≫

— Nikola Tesla

Una telecomunicación es toda transmisión y recepción de señales de cualquier naturaleza, típicamente electromagnéticas, que contengan signos, sonidos, imágenes o, en definitiva, cualquier tipo de información que se desee comunicar a cierta distancia.1
Por metonimia, también se denomina telecomunicación (o telecomunicaciones, indistintamente)nota 1 a la disciplina que estudia, diseña, desarrolla y explota aquellos sistemas que permiten dichas comunicaciones; de forma análoga,

LA INGENIERIA DE TELECOMUNICACIONES

 la ingeniería de telecomunicaciones

RESUELVE LOS PROBLEMAS TECNICOS

resuelve los problemas técnicos

ASOCIADOS A ESTA DISCIPLINA

asociados a esta disciplina.

Las telecomunicaciones

SON UNA INFRAESTRUCTURA BASICA

son una infraestructura básica

DEL CONTEXTO ACTUAL

 del contexto actual.

LA CAPACIDAD DE PODER COMUNICAR

La capacidad de poder comunicar

CUALQUIER ORDEN:

1. MILITAR.

2. POLITICA.

cualquier orden militar o política

DE FORMA CASI INSTANTANEA

de forma casi instantánea

1. HA SIDO RADICAL EN MUCHOS

2.ACONTECIMIENTOS HISTORICOS

ha sido radical en muchos acontecimientos

HISTORICOS DE LA EDAD

CONTEMPORANEA

históricos de la Edad Contemporánea

—el primer sistema de telecomunicaciones

MODERNO APARECE DURANTE LA

REVOLUCION FRANCESA

moderno aparece durante la Revolución Francesa—

. Pero además, la

TELECOMUNICACION CONSTITUYE HOY

 telecomunicación constituye hoy en día

UN FACTOR:

1. SOCIAL.

2. ECONOMICO.

 un factor social y económico

DE GRAN RELEVANCIA

de gran relevancia.

Así, estas tecnologías adquieren

1. UNA IMPORTANCIA.

2. COMO SU UTILIDAD

una importancia como su utilidad en

CONCEPTOS DE LA :

1. GLOBALIZACION.

2. SOCIEDAD DE:

2.1. INFORMACION.

2.2. CONOCIMIENTO

conceptos de la globalización

o la sociedad de la información y

del conocimiento;

QUE SE COMPLENTA CON

1. IMPORTANCIA DE LAS MISMAS.

que se complementa con la importancia

de las mismas

2. EN CUALQUIER TIPO DE ACTIVIDAD:

2.1.MERCANTIL.

2.2. FINANCIERA.

2.3. BURSATIL.

2.4. EMPRESARIAL.

en cualquier tipo de actividad mercantil, financiera, bursátil o empresarial.

LOS MEDIOS DE COMUNICACION

1. DE MASAS.

2. SE VALEN DE TELECOMUNICACIONES.

Los medios de comunicación de masas

 también se valen de las telecomunicaciones

2.1. PARA COMPARTIR CONTENIDOS.

2.2. AL PUBLICO.

para compartir contenidos al público,

2.3. DE GRAN IMPORTANCIA

2.4.de gran importancia a

A LA HORA DE ENTENDER

2.4.1. EL CONCEPTO DE

SOCIEDAD DE LA INFORMACION

2.4.2. SOCIEDAD DE MASAS:

MASS SOCIETY.

 la hora de entender el concepto de

sociedad de masas.

LA TELECOMUNICACION INCLUYE:

1. MUCHAS TECNOLOGIAS.

La telecomunicación incluye muchas tecnologías

como:

1.1. LA RADIO.

1.2. TELEVISION.

1.3. TELEFONO.

1.4. TELEFONIA MOVIL

1.5. COMUNICACIONES DE DATOS.

1.6. REDES INFORMATICAS.

 la radio, televisión, teléfono y telefonía móvil,

comunicaciones de datos, redes informáticas,

1.7.INTERNET

1.8. RADIONAVEGACION O GPS.

1.9. TELEMETRIA

Internet, radionavegación o GPS o telemetría.

Gran parte de estas tecnologías, que

NACIERON PARA SATISFACER:

1. NECESIDADES MILITARES

nacieron para satisfacer necesidades militares

2. O CIENTIFICAS

 o científicas,

HAN CONVERGIDO OTRAS:

1. ENFOCADAS A UN CONSUMO

ha convergido en otras enfocadas a un consumo

1.1. NO ESPECIALIZADO

1.2. LLAMADAS TECNOLOGIAS

DE LA :

1. INFORMACION.

2. COMUNICACION.

 no especializado llamadas tecnologías de la información y la comunicación,

DE GRAN IMPORTANCIA EN:

1. LA VIDA DIARIA.

2. DE LAS PERSONAS.

de gran importancia en la vida diaria de las personas,

3. LAS EMPRESAS.

4. LAS INSTITUCIONES:

4.1. ESTATALES.

4.2. MUNICIPALES.

4.3. EDUCATIVAS INFANTILES O

PADILOGICAS.

4.4. CIENCIAS DEL APRENDIZAJE

INFANTIL dentro del la PSICOLOGIA

INFANTIL DEL DESARROLLO:

INTEGRAL DE LA PERSONA HUMANA,

1.EN KINDER,

2.ESCUELA PRIMARIA,

3.BACHILLERATO...

-en todo el mundo, en los 5 continentes...-

1. LAS INSTITUCIONES ESTATALES.

2. LAS INSTITUCIONES POLITICAS.

las empresas o las instituciones estatales y políticas.

ES POR ESTE CONTEXTO QUE LA

TENDENCIA ACTUAL

Es por este contexto que la tendencia actual

ES LA COMUNION

-DE LAS TELECOMUNICACIONES-

es la comunión de la telecomunicación

CON OTRAS DISCIPLINAS:

1.INFORMATICA.

2. ELECTRONICA.

con otras disciplinas como la informática,

 la electrónica

3. O LA TELEMATICA

PARA:

1. DISENAR.

2. OFRECER

ESTOS:

1. PRODUCTOS....

2. SERVICIOS.

o la telemática para diseñar y ofrecer

estos productos y servicios,

LO SUFICIENTEMENTE:

1. COMPLEJOS.

2. MULTIDISCIPLINARES.

 lo suficientemente complejos y multidisciplinares

COMO PARA QUE LA FRONTERA

como para que la frontera

ENTRE LA APORTACION DE DICHAS:

DISCIPLINAS

entre la aportación de dichas disciplinas

NO SEA PERCIBIDA POR:

LAS PERSONAS.

no sea percibida por las personas

 —a pesar de que un informático,

 un eléctrico y un telecomunicador

TENGAN DISTINTOS AMBITOS:

DISCIPLINARIOS

 tengan distintos ámbitos disciplinarios—.

Índice
1 Etimología y evolución del término
2 Historia
2.1 Antecedentes
2.2 Siglo XIX. Los avances eléctricos
2.2.1 El telégrafo
2.2.2 El teléfono
2.2.3 Los cables submarinos
2.3 Siglo XX. Guerra y electrónica
2.3.1 La radiocomunicación
2.4 Época contemporánea
3 Contenido de la disciplina
3.1 Base teórica
3.2 Información, comunicación y lenguaje. Digitalización
3.3 Sistemas de comunicación
3.4 Medios de transmisión
3.4.1 Medios de transmisión guiados
3.4.2 Medios de transmisión no guiados
3.5 Técnicas básicas de las comunicaciones
3.6 Redes y servicios de telecomunicación
3.6.1 Redes y servicios de voz y datos
3.6.2 Redes y servicios de difusión radio y TV
3.6.3 Redes y servicios multiservicio de banda ancha: Triple play
3.6.4 Redes y servicios telemáticos. Internet
3.7 Otras redes y servicios profesionales y académicos
4 Influencia de las telecomunicaciones
4.1 La influencia en la tecnología
4.2 La influencia política
4.3 La influencia en la guerra
4.4 La influencia en la paz
4.5 La influencia económica
4.6 La influencia social
4.7 Las tecnologías de la información y la comunicación
5 Cooperación internacional en la telecomunicación
6 Regulación y economía de las telecomunicaciones
6.1 Los recursos naturales
6.2 El mercado de las telecomunicaciones
6.3 La normalización en las telecomunicaciones
7 Telecomunicaciones y salud
7.1 Efectos malignos
7.2 Efectos benignos
8 Véase también
9 Notas
10 Referencias
11 Bibliografía
12 Enlaces externos
Etimología y evolución del término
El término «telecomunicación» tiene su origen en el francés Télécommunication,

PALABRA QUE INVENTO EL INGENIERO

palabra que inventó el ingeniero Édouard Estaunié

 al añadir a la palabra latina

COMMUNICARE

communicare —compartir— el prefijo

GRIEGO TELE

griego tele-,

QUE SIGNIFICA DISTANCIA...

que significa distancia.2

Con este término pretendía

USAR UNA MISMA PALABRA

 usar una misma palabra para

DENOMINAR A LA

denominar a la «

1. TRANSMISION DE CONOCIMIENTO

transmisión del conocimiento

2. A DISTANCIA...

3. MEDIANTE EL USO

DE LA ELECTRICIDAD...

 a distancia mediante el uso de la electricidad»,

que hasta ese momento

ERA :

1. TELEFRAFIA.

2. TELEFONIA.

 era la telegrafía y la telefonía,

Y LO PUBLICO POR PRIMERA VEZ

y lo publicó por primera vez en

TRAITE PRACTIQUE DE LA

TELECOMMUNICATION

ELECTRIQUE (1904)

 Traité Practique de Télécommunication

Électrique (Télégraphie-Téléphonie) de 1904.2

El castellano asimiló con éxito el préstamo

EN VARIOS AMBITOS:

1. DE LA VIDA PUBLICA.

2. ACADEMICA.

3. POLITICA.

4. EMPRESARIAL.

en varios ámbitos de la vida pública,

académica, política y empresarial.

YA EN 1907 SE IMPARTIA LA :

ASIGNATURA:

 TELECOMMUNICATION

Ya en el 1907 se impartía una asignatura

 de «telecomunicación»

EN LA ESCUELA OFICIAL

DE TELEGRAFIA DE MADRID

en la Escuela Oficial de Telegrafía de Madrid

CON LOS CONTENIDOS CURRICULARES:

1. TELEFONIA.

2. TELEGRAFIA.

3. RADIOTELEGRAFIA.

4. RADIOTELEFONIA.

con los contenidos de telefonía, telegrafía, radiotelegrafía y radiotelefonía;

Y EN EL ANO 1920...

y en el año 1920

JUAN ANTONIO GAVARRIATO

Juan Antonio Galvarriato

PUBLICO

EL CORREO Y LA TELECOMUNICACION

EN ESPANA

publicó El Correo y la Telecomunicación en España.2

LA VIDA POLITICA TAMBIEN SE HABITUO....

La vida política también se habituó

A USAR EL TERMINO

a usar el término y,

EN 1921...

EL GOBIERNO DE MANEL

ALLENDESALAZAR

en 1921, el gobierno de Manuel Allendesalazar

SOLICITO UN AMBICIOSO PLAN

DE AMPLIACION

solicitó un ambicioso plan de ampliación

DE LOS SERVICIOS DE

 de los «servicios de TELECOMUNICACION»,

 que si bien nunca llegó a materializarse

debido al Desastre de Annual, demuestra

EL USO DEL TERMINO EN:

CASTELLANO

el uso del término en castellano.2

De hecho, en esa época «telecomunicación»

ERA SINONIMO DE MODERNIDAD

era sinónimo de modernidad,

POR LO QUE SE INCORPORO AL NOMBRE

por lo que se incorporó al nombre

DE MUCHAS COMPANIAS DE LA EPOCA

de muchas compañías de la época

como la "Compañía Ibérica de Telecomunicación"

de Antonio Castilla López en 1916

o la "Compañía de Telecomunicación y Electricidad"

en 1919.2

LA CONSOLIDACION REAL DEL :

TERMINO

La consolidación real del término

A NIVEL INTERNACIONAL

a nivel internacional

LLEGO CON LA CONSTITUCION

DE LA :

UNION INTERNACIONAL

 DE TELECOMUNICACIONES (UIT)

llegó con la constitución de la Unión

 Internacional de Telecomunicaciones (UIT)

EN LA CONFERENCIA DE MADRID (1932)

en la Conferencia de Madrid de 1932,

en la que SE DEFINIO

se definió «telecomunicación»

como «TODA COMUNICACION...

toda comunicación telegráfica o telefónica

DE:

1. SIGNOS.

2. SENALES.

3. ESCRITOS.

4. IMAGENES.

5. SONIDOS.

de signos, señales, escritos, imágenes y

sonidos

1. DE CUALQUIER NATURALEZA.

2. POR:

2.1 HILOS.

2.2.RADIO

2.3. OTROS SISTEMAS O PROCEDIMIENTOS:

2.3.1. ELECTRICA.

2.3.2. VISUAL (SEMAFOROS)

de cualquier naturaleza, por hilos,

radio u otros sistemas o procedimientos

eléctrica o visual (semáforos)».2

El avance de la telecomunicación

acabó por dejar desfasada esta definición y,

en el actual Reglamento de

Radiocommunicaciones,

SE REDEFINE EL TERMINO

se redefine el término:

≪ Telecomunicación:

1.Toda transmisión,

1.1.emisión o

1.2.recepción de:

1. signos,

2.señales,

3. escritos,

4. imágenes,

5.sonidos o

5. informaciones

DE CUALQUIER NATURALEZA

de cualquier naturaleza

POR MEDIO DE :

1.HILO.

2. RADIOELECTRICIDAD.

3. MEDIOS OPTICOS.

4. OTROS SISTEMAS:

ELECTROMAGNETICOS.

por hilo, radioelectricidad,

medios ópticos u otros sistemas

 electromagnéticos (CS). ≫3

Por metonimia,

EL ESTUDIO DE LA TELECOMUNICACION

O DE LAS TELECOMUNICACIONES

 el estudio de la telecomunicación

 o las telecomunicaciones se

 denomina «Telecomunicación»

 o «Telecomunicaciones» indistintamente.

Historia

Cuadro de Luc-Olivier Merson, 1869.

SEGUN LA LEYENDA DE MARATON DE

HERODOTO...
Según la leyenda de Maratón de Heródoto,

EL SOLDADO FILIPIDES

el soldado Filípides recorrió los 42 km

que separan Atenas de Esparta

PORTANDO UN MENSAJE DE :

AYUDA

portando un mensaje de ayuda.

Artículo principal:

1.Historia de las telecomunicaciones

2.Véase también:

Cronología de las tecnologías de la comunicación.

--------

Aunque, como se ha visto, la «telecomunicación»

COMO ESTUDIO UNIFICADO DE LAS

COMUNICACIONES

como estudio unificado de las comunicaciones

A DISTANCIA

ES UNA IDEA RECIENTE

a distancia es una idea reciente,

SIEMPRE HAN EXISTIDO MEDIOS DE

COMUNICACION

siempre han existido medios de comunicación

QUE TAMBIEN SON ESTUDIADOS

POR ESTA DISCIPLINA.

que también son estudiados por esta disciplina.

A lo largo de la historia han existido diferentes situaciones en las que

HA SIDO NECESARIA UNA COMUNICACION

A DISTANCIA

ha sido necesaria una comunicación a distancia,

COMO EN:

1. LA GUERRA.

2. EL COMERCIO.

como en la guerra o en el comercio.4

Sin embargo,

LA BASE ACADEMICA PARA EL ESTUDIO

 la base académica para el estudio

DE ESOS MEDIOS:

1. TEORIA DE LA INFORMACION.

de estos medios, como la teoría de la información, datan de mediados del siglo xx.

2. DATAN DE MEDIADOS DEL SIGLO XX.

Conforme las distintas civilizaciones empezaron a extenderse por territorios cada vez mayores

FUE NECESARIO :

1.UN SISTEMA

2.ORGANIZADO

 fue necesario un sistema organizado

de comunicaciones

QUE PERMITIESE EL CONTROL

1.EFECTIVO

2.DE ESOS TERRITORIOS

que permitiese el control efectivo de esos territorios.5

Es probable que el

METODO DE TELECOMUNICACIONES

MAS ANTIGUO:

MENSAJEROS...

método de telecomunicaciones más

antiguo sea el realizado con mensajeros,

MENSAJEROS:

PERSONAS QUE RECORRIAN GRANDES

1.DISTANCIAS

personas que recorrían largas distancias

2.CON SUS MENSAJES...

con sus mensajes.

Hay registros de que

YA EN LAS PRIMERAS CIVILIZACIONES

ya las primeras civilizaciones

1. COMO LA SUMERIA.

2. LA PERSA.

3. LA EGIPCIA.

4. LA ROMANA.

como la sumeria, la persa, la egipcia o la romana

IMPLEMENTABAN DIVERSOS SISTEMAS

DE :

CORREO POSTAL.

implementaron diversos sistemas de correo postal

 a lo largo de sus respectivos territorios.

Antecedentes.

Las primeras tecnologías usadas en la

telecomunicación

USABAN LAS SENALES VISUALES

usaban las señales visuales

COMO:

1. ALMENARAS.

2. SENALES DE HUMO.

como las almenaras o las señales de humo,

3. ACUSTICAS MEDIANTE EL USO DE:

3.1.TAMBORES.

3.2.CUERNOS,

3.3.BRAMADERAS

 o acústicas como mediante el uso de tambores, cuernos o bramaderas.4

Así,

EL DRAMATURGO GRIEGO ESQUILO

el dramaturgo griego Esquilo (525-456 a. C.)

RELATA EN SU OBRA:

AGAMENON

relata en su obra Agamenón

que el personaje homónimo de la mitología

COMUNICO A LA CIUDAD DE ARGOS

 comunicó a la ciudad de Argos,

de la que era rey,

Y A SU ESPOSA

CLITEMNESTRA

y a su esposa Clitemnestra,

LA VICTORIA DE LOS AQUEOS

SOBRE TROYA

 la victoria de los aqueos sobre Troya

MEDIANTE UNA CADENA DE :

SENALES...

DE FUEGO...

mediante una cadena de señales de fuego

 que iban de un punto a otro.67

También

EL HISTORIADOR GRIEGO POLIBIO

el historiador griego Polibio (204-122 a. C.)

explica otro ejemplo de comunicaciones a larga

distancia,

EL TELEGRAFO HIDRAULICO

el telégrafo hidráulico, que según cuenta

 fue

DESARROLLADO POR ENEAS EL TACTICO

 desarrollado por Eneas el Táctico

en el siglo iv a. C..89

Consistía en dos cubas de agua

provistas de sendos grifos y, sumergida

 de forma vertical,

UNA TABLILLA CON LOS :

1. SIGNOS.

2. SENALES.

una tablilla con los signos y señales

QUE SE DESEABAN :

TRANSMITIR

que se deseaban transmitir.

El emisor alertaba al receptor

CON ANTORCHAS

con antorchas el momento en el que ambos

 debían abrir y cerrar el agua, de tal forma

que el nivel del agua indicaba qué mensaje

 de la tablilla se deseaba transmitir.8

ESAS PRIMERAS MANIFESTACIONES:

TECNICAS, NO DIERON COMO RESULTADO...

Sin embargo, estas primeras manifestaciones

 técnicas no dieron como resultado

SISTEMAS DE TELECOMUNICACION

REALES

sistemas de telecomunicación reales,

sino que hasta la EDAD CONTEMPORANEA

Edad Contemporánea

NO SE INVENTARON FORMAS

no se inventaron formas

PARA REALIZAR COMUNICACIONES:

A DISTANCIA...

para realizar comunicaciones a distancia.

FUE EL CORREO POSTAL...

Fue el correo postal, en sus diferentes

manifestaciones,

EL QUE ASUMIO EL PAPEL DE:

1. COMUNICAR A LAS PERSONAS.

2. DURANTE CASI TODA :

LA HISTORIA.

el que asumió el papel de comunicar a las personas durante casi toda la historia.10

Más reciente es el uso de los

TELEGRAFOS OPTICOS

 telégrafos ópticos, considerado el

PRIMER SISTEMA DE TELECOMUNICACIONES

MODERNO

 primer sistema de telecomunicación moderno

AL PERMITIR :

CODIFICAR IMAGENES

al permitir codificar mensajes

QUE NO HABIAN SIDO PREFIJADAS

CON ANTERIORIDAD

que no habían sido prefijados con anterioridad;

hasta entonces,

SE TRANSMITIAN MENSAJES SENCILLOS

se transmitían mensajes sencillos,

COMO:

1. PELIGRO.

2. VICTORIA.

como 'peligro' o 'victoria',

SIN LA POSIBILIDAD DE:

1. DAR DETALLES.

2. DAR DESCRIPCIONES.

sin la posibilidad

de dar detalles o descripciones.

Se trataba de unas estructuras provistas de brazos móviles que, mediante cuerdas y poleas, adoptaban diferentes posiciones con las que codificar el mensaje.11

AUNQUE FUE ROBERT HOOKE

Aunque fue Robert Hooke quien, en 1684,

PRESENTO A LA ROYAL SOCIETY

presentó a la Royal Society

UN PRIMER DISENO DETALLADO

un primer diseño detallado

DE UN TELEGRAFO OPTICO

de un telégrafo óptico,1213 no fue hasta

principios del siglo xix en Francia

CUANDO SE IMPLEMENTO DE FORMA:

EFICAZ

cuando se implementó de una forma eficaz.

Fue durante la Revolución francesa,

cuando existían en el país

UNA NECESIDAD IMPORTANTE

una necesidad importante

DE PODER TRANSMITIR:

ORDENES...

de poder transmitir las órdenes

DE FORMA:

1. EFICAZ.

2. RAPIDA.

de una forma eficaz y rápida,13

 cuando el ingeniero Claude Chappe

Y SUS HERMANOS INSTALARON

y sus hermanos instalaron 556 telégrafos

 ópticos que cubrían una distancia de casi

 5000 kilómetros.11

La primera línea, de 22 torres y 230

 kilómetros, se dispuso en 1792

ENTRE PARIS Y LILLE

entre París y Lille,14 y en 1794,

TRANSMITIO LA NOTICIA DE LA VICTORIA

FRANCESA

transmitió la noticia de la victoria

 francesa en Condé-sur-l'Escaut:15.

Condé ha vuelto a poder de la República:

 la rendición se ha efectuado esta mañana

 a las seis.nota 2

Primer mensaje del telégrafo óptico

de Chappe.1617

El sistema, que

RESULTO SER UN EXITO

 resultó ser un éxito en el terreno militar,

SE EXTENDIO POR TODA EUROPA

 se extendió por toda Europa aunque

con las modificaciones propias de cada país,

COMO EL DISENO DE MURRAY

como el diseño de Murray en Gran Bretaña18

 o el de Breguet y Betancourt, así

como el de Mathé, en España.19

El telégrafo hidráulico fue utilizado por Eneas el Táctico. 

Bramadera usada por los Apaches para comunicarse. 

Cuerno usado en sudamérica por la cultura moche en el siglo iii. 

En 1792 se instaló en Francia una red de telégrafos ópticos. 
Siglo XIX. Los avances eléctricos

Ilustración de un artículo de Sömmerring de 1810.
Como se aprecia el telégrafo electroquímico de Sömmerring usaba la electricidad de una pila voltaica, el instrumento alto de la derecha.20.

Aunque fue en el 1729

CUANDO EL CIENTIFICO :

STEPHEN GRAY

cuando el científico Stephen Gray

HABIA DESCUBIERTO FORMALMENTE

QUE:

LA ELECTRICIDAD

había descubierto formalmente

que la electricidad

1. PODIA SER TRANSMITIDA

podía ser transmitida,

2. LOS PRIMEROS EXPERIMENTOS

TECNICOS

 los primeros experimentos técnicos

3. NO SE REALIZARON HASTA EL SIGLO:

XIX...

no se materializaron hasta el siglo xix,

cuando Alessandro Volta

PRESENTO A LA ROYAL SOCIETY

presentó a la Royal Society

UN INSTRUMENTO CAPAS DE GENERAR

un instrumento capaz de generar

1. CORRIENTE CONTINUA.

corriente continua,

2. LA PILA VOLTAICA

la pila voltaica

—véase la historia de la electricidad—.

Por ejemplo, un experimento inicial en la

 telegrafía eléctrica fue el

TELEGRAFO ELECTROQUIMICO

 telégrafo electroquímico

CREADO POR EL CIENTIFICO:

ALEMAN

creado por el científico alemán

Samuel Thomas von Sömmerring en 1809,nota 3

basado en un diseño menos robusto de 1804

DEL CIENTIFICO ESPANOL:

FRANCISCO SALVA

 del científico español Francisco Salvá .

Campillo.212022

Este invento empleaba señales eléctricas

 que se enviaban por diversos cables metálicos,

 una por cada letra.

En el extremo receptor las corrientes

electrolizaban el ácido de unos tubos

 individuales de vidrio liberándose

corrientes de burbujas de hidrógeno

en el tubo correspondiente para que

fueran vistas por el operador del receptor.2022

El telégrafo
Artículos principales: Telégrafo y Telegrafía.

Grabado de Popular Science Monthly Volume 3, p. 418 (en inglés).
Telégrafo de una sola aguja de Cooke y Wheatstone. Cuando se giraba la manivela en un sentido, el movimiento se replicaba en el receptor.

Grabado de Appletons' Cyclopædia of American Biography, p. 426. (en inglés) de 1900.
Grabado del diseño original del telégrafo de Morse.
El telégrafo eléctrico, que se desarrolló en la primera mitad del siglo xix, tiene su origen en multitud de experimentos y nuevas tecnologías, por lo que no se puede mencionar un único inventor aunque sí algunos nombres importantes.23

Por ejemplo, el diplomático ruso Pavel Schilling construyó en 1832, en su propio apartamento, un telégrafo electromagnético que usaba seis galvanómetros como receptores cuyas agujas señalaban el carácter enviado.24 Otro ejemplo lo encontramos en los célebres científicos Gauss y Weber, quienes en 1833 instalaron una línea telegráfica entre la universidad y el observatorio astronómico de Gotinga donde ambos trabajaban. Consiguieron comunicarse haciendo mover la aguja de un magnetómetro, con la que coordinaban el tiempo, y llegaron a desarrollar un código de 5 bits.24

Sin embargo no fue hasta la primera patente de un telégrafo cuando este salió de los laboratorios. Fue en 1837, cuando William Fothergill Cooke, quien se asoció con el profesor de física Charles Wheatstone, patentó un telégrafo de cinco conductores eléctricos que hacían mover otras cinco agujas imantadas con las que señalar una de las 20 letras que tenía el aparato.25 En julio de ese mismo año hicieron una demostración de su invento entre las estaciones de Euston y Camden Town,25 pero no fue hasta el 9 de julio de 1839 cuando empezó a funcionar su invento entre la estación de Paddington, en Londres y la de West Drayton, a 21 kilómetros de distancia.26 Esta vez, sin embargo, utilizaron una variante de su invento que usaba solo dos agujas y utilizaba un código de pulsos eléctricos positivos y negativos para cada carácter.26
Finalmente, tras conseguir reducir el número de agujas de su

No comments:

Post a Comment