Tuesday, November 26, 2019

A : INGENIERO FRANK HATTON GUERRERO, INMORTAL DEL DEPORTE DOMINICANO, desde 1970, In Memoriam. LA CALIDAD NO ES UN ACTO, ES UN HABITO. ARISTOTELES. ------- EL PENSAR EN UN LOCUTOR PROFESIONAL, MUSICAL, DEPORTIVO, HISTORICO, EN CIENCIAS, EN TECNOLOGIAS, el dominicano y la dominicana, BIEN INFORMADOS, no PUEDE DEJAR DE RECORDAR, que para HABLAR POR UN MICROFONO, en el territorio DOMINICANO, por la RADO DOMINICANA, como: 1, INSTRUMENTO MASIVO DE CIENCIAS: DE CULTURA. 2. DE PAZ, DE INFORMACION, NO DE BASURA SIENDO YA UNA CELEBRIDAD MUNDIAL: COMO CIENTIFICO TICs... 1. EL INGENIERO ELECTRONICO FRANK HATTON GUERRERO, 2. PESE A SER EL INVENTOR DE : HIZ... 3. PESE A SER EL FUNDADOR DE RADIO CLUB DOMINICANO, INC Y SU PRIMER PRESIDENTE... TUVO QUE ASISTIR, humildemente COMO TODO EL MUNDO EN REPUBLICA DOMINICANA; 1. A EXAMIARSE PARA SER : LOCUTOR O LOCUTORA. 2. PARA HABLAR POR RADIO: PROFESIONALMENTE... -DIARIA O SEMANALMENTE- 2.1.INFORMADAMENTE, 2.2.DOMINICANAMENTE... NINGUN TITULO UNIVERSITARIO EN LA TIERRA, PROVEE LOS CONOCIMIENTOS DE LA : 1.PROFESION DE LOCUTOR O LOCUTORA -MUSICAL, DISC JOCKEY O PROGRAMADOR- MUSICAL DE RADIO... 2.DE LOCUTOR O LOCUTORA : DEPORTIVO. 3.DE LOCUTOR O LOCUTORA EN : CIENCIAS HISTORICAS. 4.DE LOCUTOR O LOCUTORA, EN ECONOMIA DIGITAL. 5,DE LOCUTOR O LOCUTORA: EN NUEVAS TECNOLOGIAS & CIENCIAS TICs. 6,DE LOCUTOR O LOCUTORA EN : PAIDOLOGIA O EDUCACION INFANTIL... 7.DE LOCUTOR O LOCUTORA EN: ANIMACION SOCIO-CULTURAL (ASC) PARA : CIENCIAS ANDRAGOGICAS O EDUCACION DE PERSONAS ADULTAS... 8.DE LOCUTOR PARA LA PROMOCION DE 1. CIENCIAS DEL OCIO. 2. CIENCIAS DEL DEPORTE... EL UNICO ORGANO & CONTROL DE CALIDAD EN KAYZEN & TQM, que tiene LA INDUSTRIA RADIOFONICA, EN SUS METRICAS, 1. ESTETICAS RADIOFONICAS. 2. SEMIOLOGIAS RADIOFONICAS. 3. PRECISION INFORMATIVA, en esa promocion: ES LA BARRERA DE ACCESO: INICIAL, de la COMISION NACIONAL DE ESTECTACULOS PUBLICOS & RADIOFONIA (CNEPR): LOS EXAMENES, PARA INGRESAR A LA PROFESION DE LOCUTOR... 1. ESOS CARNETS... no se venden... 2. ESOS CARNETS, no se regalan a PELAFUSTANES... PORQUE SON CON UN JURADO: EXAMINADOR... ---------- 1981. https://en.wikipedia.org/wiki/Electronic_engineering FALLECE EN SANTO DOMINGO DE GUZMAN EL CIENTIFICO DOMINICANO, ING. ELECTRONICO, FRANK HATTON GUERRERO. Las personas que habian seguido su carrera, SUS APORTES DE TODO TIPO: 1. A LA CIENCIA DE LA RADIODIFUSION DOMINICANA. 2. AL SHOW BUSNESS DOMINICANO, 3. A LA NARRACION DEPORTIVA RADIAL DOMINICANA. 4. A LA INVENCION DE UNA EMISORA: COMPLETA -DESDE SU IMAGINACION- en el caso concreto de la RADIOESTACION COMERCIAL, PRIMERA EN EL PAIS: HIZ. 5.A LA PRACTICA DEPORTIVA : PROFESIONAL Y AFICIONADA, Desde su equipo capitaleno TIGRES DEL LICEY, donde jugo como : short -stop. COMO A LOS OCIOS INSTRUCCIONALES (Doumazedier, 1968) FOMENTANDO EN TODO SU TIEMPO LIBRE, la PRACTICA JUVENIL E INFANTIL, aficionada del : 1. GOLF. 2. EL FUTBOL, 3. EL BALONCESTO. EN SU VIDA INTIMA,PRIVADA, FAMILIAR, COMO EN SU VIDA COMO : EMPLEADO PUBLICO, COMO FUNCIONARIO PUBLICO, en la calidad de: PRIMER DIRECTOR DE DEPORTES DE LA NACION & DE LA REPUBLICA DOMINICANA (1938) BAJO LA DIVISA: CUERPO SANO, MENTE, SANA... LE MONTAN UNA GUARDIA DE HONOR A SU FERETRO... LOS DIRECTIVOS DE RADIO CLUB DOMINICANO, INC. entidad que ayuda a fundar desde los anos 20s, DEL PASADO SIGLO XX, y que llego a PRESIDIR EN EL ANO 1926. CONVERGEN ANTE ESA ATAUD, LOS PROFESIONALES DOMINICANOS, conscientes DEL VALOR PARA UNA ECONOMIA, PARA UNA NACION, DE HABER PRODUCIDO: EL PRIMER INGENIERO ELECTRONICO, en un pais: 1. NO electrificado. 2. NO urbanizado. 3. CARENTE DE ELECTRODOMESTICOS DE MANUFACTURA NACIONAL DOMINICANA O IMPORTADA EN EL MERCADO DOMINICANO DE LAS: IMPORTACIONES DE EQUIPO ELECTRICO O ELECTRONICO, dado que CARECIAMOS DE LA : ENERGIA QUE NOS MUEVE: LA ELECTRICIDAD... ING. ELECTRONICO FRANK HATTON GUERRERO, es una fuerza inspiradora al trabajo y al estudio para todos los ninos y ninas pobres, que ahora estan cursando EL KINDERGARTEN, en Africa, en Asia, en el Caribe, en Oceania, PARA QUE NO DESMAYEN EN SUS SUENOS DE LLEGAR A SER : DUENOS DE UNA MYPIME... AUNQUE LA MISMA SOLO TENGA UN SOLO EMPLEADO: UD. MISMO... https://en.wikipedia.org/wiki/Electronic_engineering ------------ CCIAV, CC4AVE. Talents, Criticism, Friendship! Salut, Polis, Ecumene! (1959-2019) --------- ELECTRONIC ENGINEERING. https://en.wikipedia.org/wiki/Electronic_engineering -------------- Electronic engineering From Wikipedia, the free encyclopedia Electronic engineering (also called electronics and COMMUNICATIONS ENGINEERING communications engineering) IS AN ELECTRICALENGINEERING DISCIPLINE is an electrical engineering discipline which UTILIZES NONLINEAR AND ACTIVE ELECTRICAL COMPONENTS utilizes nonlinear and active electrical components (such as semiconductor devices, especially transistors, diodes and integrated circuits) TO DESING ELECTRONIC 1. CIRCUITS. 2. DEVICES. 3. VLSI DEVICES 4. AND THEIR SYSTEMS... to design electronic circuits, devices, VLSI devices and their systems. THE DISCIPLINE TYPICALLY ALSO : DESIGN The discipline typically also designs PASSIVE ELECTRICALCOMPONENTS passive electrical components, USUALLY BASED ON PRINTED CIRCUITS BOARDS. usually based on printed circuit boards. ELECTRONICS IS A SUB-FIELD WITHIN THE WIDER ELECTRICAL Electronics is a subfield within the wider ELECTRICAL ENGINEERING ACADEMIC SUBJECTS electrical engineering academic subject BUT DENOTES A BROAD ENGINEERING FIELD but denotes a broad engineering field THAT COVER SUB-FIELDS AS: 1. ANALOG ELECTRONICS. 2. DIGITAL ELECTRONICS. 3. CONSUMER ELECTRONICS. 1.EMBEDED SYSTEMS. 2. POWER ELECTRONICS. that covers subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. ELECTRONICS ENGINEERING DEALS: 1. IMPLEMENTATION OF APPLICATIONS 2. PRINCIPLES. 3.ALGORTHMS. 4. DEVELOPED WITHIN: MANY RELATIVE FIELDS lectronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, FOR EXAMPLE: 1. SOLID-STATE PHYSICS. 2. RADIO ENGINEERING. 3. TELECOMMUNICATIONS. 4. CONTROL SYSTEMS. 5. SIGNAL PROCESSING. 6. SYSTEM ENGENEERING. 7.COMPUTER ENGENEERING. 8. INSTRUMENTATION ENGENEERING. 9. ROBOTICS. 10. ELECTRIC POWER CONTROL for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others. THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) The Institute of Electrical and Electronics Engineers (IEEE) IS ONE OF THE MOST IMPORTANT AND INFLUENTIAL ORGANIZATIONS CIis one of the most important and influential organizations for electronics engineers based in the US. ON AND INTERNATIONAL LEVEL... THE INTERNATIONAL ELECTROTECHNICAL COMMISION (IEC). On an international level, the International Electrotechnical Commission (IEC) PREPARES STANDARS FOR ELECTRONIC ENGENEERING prepares standards for electronic engineering, 1.DEVELOPED THROUGH CONSENSUS developed through consensus 2. AND THANKS TO THE WORK 2.1. OF 20,000 EXPERTS and thanks to the work of 20,000 experts 2.2. FROM 172 COUNTRIES WORLDWIDE. from 172 countries worldwide. Contents 1 Relationship to electrical engineering 2 History 3 Electronics 4 Subfields 5 Education and training 5.1 Electromagnetics 5.2 Network analysis 5.3 Electronic devices and circuits 5.4 Signals and systems 5.5 Control systems 5.6 Communications 6 Professional practice 7 Project engineering 8 See also 9 References 10 External links Relationship to electrical engineering Electronics is a subfield within the wider electrical engineering academic subject. An academic degree with a major in electronics engineering can be acquired from some universities, while other universities use electrical engineering as the subject. The term electrical engineer is still used in the academic world to include electronic engineers.[1] However, some people consider the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others consider that power is just one subset of electrical engineering, as well as 'electrical distribution engineering'. The term 'power engineering' is used as a descriptor in that industry. Again, in recent years there has been a growth of new separate-entry degree courses such as 'systems engineering' and 'communication systems engineering', often followed by academic departments of similar name, which are typically not considered as subfields of electronics engineering but of electrical engineering.[2][3] History Main article: History of electronic engineering Electronic engineering as a profession sprang from technological improvements in the telegraph industry in the late 19th century and the radio and the telephone industries in the early 20th century. People were attracted to radio by the technical fascination it inspired, first in receiving and then in transmitting. Many who went into broadcasting in the 1920s were only 'amateurs' in the period before World War I.[4] To a large extent, the modern discipline of electronic engineering was born out of telephone, radio, and television equipment development and the large amount of electronic systems development during World War II of radar, sonar, communication systems, and advanced munitions and weapon systems. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge.[5] The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947.[6] The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was later invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959.[7][8][9] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[10] The MOSFET revolutionized the electronics industry,[11][12] becoming the most widely used electronic device in the world.[8][13][14] The MOSFET is the basic element in most modern electronic equipment.[15][16] Electronics Main article: Electronics In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit. In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing. For systems of intermediate complexity, engineers may use VHDL modeling for programmable logic devices and FPGAs. Integrated circuits, FPGAs and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.[17] Subfields This section duplicates the scope of other sections, specifically, Electrical engineering#Subfields. (February 2019) Electronic engineering has many subfields. This section describes some of the most popular subfields in electronic engineering; although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields. Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals. Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space. Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer. Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise. Electromagnetics is an in-depth study about the signals that are transmitted in a channel (Wired or Wireless). This includes Basics of Electromagnetic waves, Transmission Lines and Waveguides, Antennas, its types and applications with Radio-Frequency (RF) and Microwaves. Its applications are seen widely in other sub-fields like Telecommunication, Control and Instrumentation Engineering. Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation. Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control, the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation. The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier–Seebeck effect to measure the temperature difference between two points. Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering. Computer engineering deals with the design of computers and computer systems. This may involve the design of new computer hardware, the design of PDAs or the use of computers to control an industrial plant. Development of embedded systems—systems made for specific tasks (e.g., mobile phones)—is also included in this field. This field includes the micro controller and its applications. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline. VLSI design engineering VLSI stands for very large scale integration. It deals with fabrication of ICs and various electronic components. Source: https://en.wikipedia.org/wiki/Electronic_engineering Yoe F. Santos/CCIAV. CCIAV, CC4AVE. Talents, Criticism, Friendship! Salut, Polis, Ecumene! (1959-2019) ---------- AUNQUE YA, ERA UNA LEYENDA ENTRE LOS CIENTIFICOS & LOS ESPECIALISTAS DOMINICANOS, en el ano 1938: COMO INVENTOR, COMO GERENTE, COMO INGENIERO ELECTRONICO... HUMILDEMENTE... 1. FUE A TOMAR SU EXAMEN, DE : LOCUCION. 2. APROBO LOS EXAMENES DE: LOCUCION. LA UNICA MANERA DE INGRESAR A ESTA PROFESION Y PODER HABLAR POR UN: MICROFONO EN LA REPUBLICA DOMINICANA. TENER: CARNET DE LOCUTOR. CARNET DE LOCUTOR, QUE NO SE REGALA... CARNET DE LOCUTOR, QUE NO SE VENDE... CARNET DE LOCUTOR, QUE NO SE TRAFICA... Cuando se SOMETIO, DOCIL, CIVILIZADAMENTE A LOS EXAMENES, con que EL ESTADO DOMINICANO, EL GOBIERNO DOMINICANO, LA ADMINISTRACION PUBLICA DOMINICANA 1. GARANTIZA LA SALUD, DE TODOS Y TODAS LOS RADIOYENTES DOMINICANOS. 2. CON CALIDAD DE INFORMACION, NO: DESINFORMACION... 3. ENTONCES, AUNQUE TOMO LOS EXAMENES, COMO : ASPIRANTE A LOCUTOR DOMINICANO, en 1938... 4. NO ES HASTA EL ANO : 1939 que el GOBIERNO DOMINICANO, mediante sus ORGANOS CIENTIFICOS DE DEPURACION: LE OTORGA EL CARNET DE LOCUTOR... QUE ES UN LOCUTOR O LOCUTURA? 1. UN EDUCADOR MASIVO. 2. ALGUIEN QUE HA TENIDO OPORTUNIDADES: EDUCATIVAS, que la mayoria de la poblacion, NUNCA TUVO,o jamas tendra... 2.1. ENTONCES ESA PERSONA, TIENE: NUEVAS IDEAS QUE APORTAR, para que EL PAIS, FUNCIONE, MEJOR PARA TODOS Y PARA TODAS LOS DOMINICANOS... Para que el PAIS: Se Institucionalice. Para que el pais, SE MODERNICE... Para que el PAIS, se INDUSTRIALICE, Para que el pais EXPLORE NUEVAS FUENTES DE EMPLEOS PRODUCTIVOS. Para que el pais, MEJORE EN EL ACCESO A LA SALUD, CIENTIFICA, no a la brujeria, ni a las botellas, limpia-vientres... SINO A: 1. LA GINECO-OBSTETRICIA CIENTIFICA. 2. A LA PEDIATRIA, CIENTIFICA. 3. A LAS CIENCIAS DEL OCIO, CIENTIFICAS. 4. A LAS CIENCIAS DEL DEPORTE, CIENTIFICAS. 5. A LAS CIENCIAS DE LA GERENCIA O DE LA GESTION, CIENTIFICAS. 6. AL COMERCIO INTERNACIONAL O MUNDIAL CIENTIFICO. 7. A LA FAMILIA HETEROSEXUAL, CRIADA CON TODOS LOS ESTANDARES DE EXCELENCIA EN HOGARES, POBRES O RICOS, DOMINICANOS. 8 A LA ATENCION PRIMARIA EN SALUD, CIENTIFICA. 9. AL REGIMEN SUBSIDIADO DE SALUD, EN SENASA, como ha ocurrido con los : 3 millones 700 PACIENTES DOMINICANOS, en los ultimos 7 anos (2012-2019)... HOY ES EL DIA DOMINICANO DEL MERENGUE, PERO UNA ECONOMIA PROSPERA & EXPORTADORA COMO LA DOMINICANA, NO SE CONSTRUYE: BAILANDO MEREGUE... SINO TRABAJANDO COMO DIOS MANDA! 8 HORAS DIARIAS, EN UN PUESTO DE: TRABAJO PRODUCTIVO DE RIQUEZA, EN LAS INDUSTRIAS DOMINICANAS... EN LA MANUFACTURA DOMINICANA, EN LAS CARRETERAS DOMINICANAS, EN LAS TELECOMUNICACIONES DOMINICANAS, EN LA RADIO DOMINICANA, EN LAS OFICINAS DOMINICANAS, EN LA TELEVISION DOMINICANA, EN EL CINE DOMINICANO, EN EL TALLER DE MECANICA DOMINICANO, EN EL COLMADO Y EL COLMADON DOMINICANOS EN EL SUPERMERCADO DOMINICANO, EN EL DELIVERY DOMINICANO, EN EL MOTOCONCHO DOMINICANO, EN EL TAXI DOMINICANO, EN EL AUTOBUS DOMINICANO, EN LOS MUELLES DOMINICANOS, EN LOS AEROPUERTOS DOMINICANOS... EN LOS 4,000 NUEVOS KILOMETROS DE CARRETERAS DOMINICANOS, PARA; EL EJERCICIO & LA PRACTICA DE LAS CIENCIAS LOGISTICAS DOMINICANAS... Yoe F. Santos/CCIAV. CCIAV, CC4AVE. Talents, Criticism, Friendship! Salut, Polis, Ecumene! (1959-2019) --------- ELECTRONIC ENGINEERING. -------------- Electronic engineering From Wikipedia, the free encyclopedia Electronic engineering (also called electronics and COMMUNICATIONS ENGINEERING communications engineering) IS AN ELECTRICALENGINEERING DISCIPLINE is an electrical engineering discipline which UTILIZES NONLINEAR AND ACTIVE ELECTRICAL COMPONENTS utilizes nonlinear and active electrical components (such as semiconductor devices, especially transistors, diodes and integrated circuits) TO DESING ELECTRONIC 1. CIRCUITS. 2. DEVICES. 3. VLSI DEVICES 4. AND THEIR SYSTEMS... to design electronic circuits, devices, VLSI devices and their systems. THE DISCIPLINE TYPICALLY ALSO : DESIGN The discipline typically also designs PASSIVE ELECTRICALCOMPONENTS passive electrical components, USUALLY BASED ON PRINTED CIRCUITS BOARDS. usually based on printed circuit boards. ELECTRONICS IS A SUB-FIELD WITHIN THE WIDER ELECTRICAL Electronics is a subfield within the wider ELECTRICAL ENGINEERING ACADEMIC SUBJECTS electrical engineering academic subject BUT DENOTES A BROAD ENGINEERING FIELD but denotes a broad engineering field THAT COVER SUB-FIELDS AS: 1. ANALOG ELECTRONICS. 2. DIGITAL ELECTRONICS. 3. CONSUMER ELECTRONICS. 1.EMBEDED SYSTEMS. 2. POWER ELECTRONICS. that covers subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. ELECTRONICS ENGINEERING DEALS: 1. IMPLEMENTATION OF APPLICATIONS 2. PRINCIPLES. 3.ALGORTHMS. 4. DEVELOPED WITHIN: MANY RELATIVE FIELDS lectronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, FOR EXAMPLE: 1. SOLID-STATE PHYSICS. 2. RADIO ENGINEERING. 3. TELECOMMUNICATIONS. 4. CONTROL SYSTEMS. 5. SIGNAL PROCESSING. 6. SYSTEM ENGENEERING. 7.COMPUTER ENGENEERING. 8. INSTRUMENTATION ENGENEERING. 9. ROBOTICS. 10. ELECTRIC POWER CONTROL for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others. THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) The Institute of Electrical and Electronics Engineers (IEEE) IS ONE OF THE MOST IMPORTANT AND INFLUENTIAL ORGANIZATIONS CIis one of the most important and influential organizations for electronics engineers based in the US. ON AND INTERNATIONAL LEVEL... THE INTERNATIONAL ELECTROTECHNICAL COMMISION (IEC). On an international level, the International Electrotechnical Commission (IEC) PREPARES STANDARS FOR ELECTRONIC ENGENEERING prepares standards for electronic engineering, 1.DEVELOPED THROUGH CONSENSUS developed through consensus 2. AND THANKS TO THE WORK 2.1. OF 20,000 EXPERTS and thanks to the work of 20,000 experts 2.2. FROM 172 COUNTRIES WORLDWIDE. from 172 countries worldwide. Contents 1 Relationship to electrical engineering 2 History 3 Electronics 4 Subfields 5 Education and training 5.1 Electromagnetics 5.2 Network analysis 5.3 Electronic devices and circuits 5.4 Signals and systems 5.5 Control systems 5.6 Communications 6 Professional practice 7 Project engineering 8 See also 9 References 10 External links Relationship to electrical engineering Electronics is a subfield within the wider electrical engineering academic subject. An academic degree with a major in electronics engineering can be acquired from some universities, while other universities use electrical engineering as the subject. The term electrical engineer is still used in the academic world to include electronic engineers.[1] However, some people consider the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others consider that power is just one subset of electrical engineering, as well as 'electrical distribution engineering'. The term 'power engineering' is used as a descriptor in that industry. Again, in recent years there has been a growth of new separate-entry degree courses such as 'systems engineering' and 'communication systems engineering', often followed by academic departments of similar name, which are typically not considered as subfields of electronics engineering but of electrical engineering.[2][3] History Main article: History of electronic engineering Electronic engineering as a profession sprang from technological improvements in the telegraph industry in the late 19th century and the radio and the telephone industries in the early 20th century. People were attracted to radio by the technical fascination it inspired, first in receiving and then in transmitting. Many who went into broadcasting in the 1920s were only 'amateurs' in the period before World War I.[4] To a large extent, the modern discipline of electronic engineering was born out of telephone, radio, and television equipment development and the large amount of electronic systems development during World War II of radar, sonar, communication systems, and advanced munitions and weapon systems. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge.[5] The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947.[6] The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was later invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959.[7][8][9] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[10] The MOSFET revolutionized the electronics industry,[11][12] becoming the most widely used electronic device in the world.[8][13][14] The MOSFET is the basic element in most modern electronic equipment.[15][16] Electronics Main article: Electronics In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit. In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing. For systems of intermediate complexity, engineers may use VHDL modeling for programmable logic devices and FPGAs. Integrated circuits, FPGAs and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.[17] Subfields This section duplicates the scope of other sections, specifically, Electrical engineering#Subfields. (February 2019) Electronic engineering has many subfields. This section describes some of the most popular subfields in electronic engineering; although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields. Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals. Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space. Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer. Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise. Electromagnetics is an in-depth study about the signals that are transmitted in a channel (Wired or Wireless). This includes Basics of Electromagnetic waves, Transmission Lines and Waveguides, Antennas, its types and applications with Radio-Frequency (RF) and Microwaves. Its applications are seen widely in other sub-fields like Telecommunication, Control and Instrumentation Engineering. Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation. Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control, the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation. The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier–Seebeck effect to measure the temperature difference between two points. Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering. Computer engineering deals with the design of computers and computer systems. This may involve the design of new computer hardware, the design of PDAs or the use of computers to control an industrial plant. Development of embedded systems—systems made for specific tasks (e.g., mobile phones)—is also included in this field. This field includes the micro controller and its applications. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline. VLSI design engineering VLSI stands for very large scale integration. It deals with fabrication of ICs and various electronic components. Education and training Main article: Education and training of electrical and electronics engineers Electronics engineers typically possess an academic degree with a major in electronic engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Applied Science, or Bachelor of Technology depending upon the university. Many UK universities also offer Master of Engineering (MEng) degrees at the graduate level. Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science, Doctor of Philosophy in Engineering, or an Engineering Doctorate. The master's degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The master's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia. In most countries, a bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. Certification allows engineers to legally sign off on plans for projects affecting public safety.[18] After completing a certified degree program, the engineer must satisfy a range of requirements, including work experience requirements, before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada, and South Africa), Chartered Engineer or Incorporated Engineer (in the United Kingdom, Ireland, India, and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (in much of the European Union). A degree in electronics generally includes units covering physics, chemistry, mathematics, project management and specific topics in electrical engineering. Initially, such topics cover most, if not all, of the subfields of electronic engineering. Students then choose to specialize in one or more subfields towards the end of the degree. Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design and simulation software programs when designing electronic systems. Although most electronic engineers will understand basic circuit theory, the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI but are largely irrelevant to engineers working with embedded systems. Apart from electromagnetics and network theory, other items in the syllabus are particular to electronics engineering course. Electrical engineering courses have other specialisms such as machines, power generation and distribution. This list does not include the extensive engineering mathematics curriculum that is a prerequisite to a degree.[19][20] Electromagnetics Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Antennas: Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem, antenna gain.[21][22] Network analysis Network graphs: matrices associated with graphs; incidence, fundamental cut set, and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation.[23] Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.[24] Electronic devices and circuits Electronic devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-i-n and avalanche photo diode, LASERs. Device technology: integrated circuit fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.[25][26] Analog circuits: Equivalent circuits (large and small-signal) of diodes, BJT, JFETs, and MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.[27] Digital circuits: Boolean functions (NOT, AND, OR, XOR,...). Logic gates digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor 8086: architecture, programming, memory and I/O interfacing.[28][29] Signals and systems Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros frequency response, group delay, phase delay. Signal transmission through LTI systems. Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density, function analogy between vectors & functions.[30][31] Control systems Basic control system components; block diagrammatic description, reduction of block diagrams — Mason's rule. Open loop and closed loop (negative unity feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Analysis of steady-state disturbance rejection and noise sensitivity. Tools and techniques for LTI control system analysis and design: root loci, Routh-Hurwitz stability criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative controller (PID). Discretization of continuous time systems using zero-order hold and ADCs for digital controller implementation. Limitations of digital controllers: aliasing. State variable representation and solution of state equation of LTI control systems. Linearization of Nonlinear dynamical systems with state-space realizations in both frequency and time domains. Fundamental concepts of controllability and observability for MIMO LTI systems. State space realizations: observable and controllable canonical form. Ackermann's formula for state-feedback pole placement. Design of full order and reduced order estimators.[32][33] Communications Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne noise conditions. Digital communication systems: pulse-code modulation (PCM), differential pulse-code modulation (DPCM), delta modulation (DM), digital modulation – amplitude, phase- and frequency-shift keying schemes (ASK, PSK, FSK), matched-filter receivers, bandwidth consideration and probability of error calculations for these schemes, GSM, TDMA.[34][35] Professional practice Professional bodies of note for electrical engineers include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Electrical Engineers (IEE) (now renamed the Institution of Engineering and Technology or IET). Members of the Institution of Engineering and Technology (MIET) are recognized professionally in Europe, as Electrical and computer (technology) engineers. The IEEE claims to produce 30 percent of the world's literature in electrical/electronic engineering, has over 430,000 members, and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each year. SMIEEE is a recognised professional designation in the United States. Project engineering For most engineers not involved at the cutting edge of system design and development, technical work accounts for only a fraction of the work they do. A lot of time is also spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason, project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important. The workplaces of electronics engineers are just as varied as the types of work they do. Electronics engineers may be found in the pristine laboratory environment of a fabrication plant, the offices of a consulting firm or in a research laboratory. During their working life, electronics engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers. Obsolescence of technical skills is a serious concern for electronics engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency. And these are mostly used in the field of consumer electronics products.[36] See also icon Electronics portal Electrical engineering technology Glossary of electrical and electronics engineering Index of electrical engineering articles Information engineering List of electrical engineers Timeline of electrical and electronic engineering References Allan R. Hambley Electrical Engineering, pp. 3, 441, Prentice Hall, 2004 ISBN 978-0-13-147046-0 Principles of Electrical Engineering. Books.google.com. Retrieved 29 October 2012. Anthony J. Pansini Electrical Distribution Engineering, p. xiv, The Fairmont Press Inc., 2006 ISBN 978-0-88173-546-8 Erik Barnouw A Tower in Babel, p. 28, Oxford University Press US, 1966 ISBN 978-0-19-500474-8 Radio Engineering Principles. Books.google.com. Retrieved 29 October 2012. "1947: Invention of the Point-Contact Transistor". Computer History Museum. Retrieved 10 August 2019. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019. "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Retrieved 21 July 2019. Cite error: The named reference Moskowitz was invoked but never defined (see the help page). Chan, Yi-Jen (1992). Studies of InAIAs/InGaAs and GaInP/GaAs heterostructure FET's for high speed applications. University of Michigan. p. 1. The Si MOSFET has revolutionized the electronics industry and as a result impacts our daily lives in almost every conceivable way. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal-oxide-semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. Golio, Mike; Golio, Janet (2018). RF and Microwave Passive and Active Technologies. CRC Press. pp. 18–2. ISBN 9781420006728. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. Daniels, Lee A. (28 May 1992). "Dr. Dawon Kahng, 61, Inventor In Field of Solid-State Electronics". The New York Times. Retrieved 1 April 2017. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. Charles A. Harper High Performance Printed Circuit Boards, pp. xiii-xiv, McGraw-Hill Professional, 2000 ISBN 978-0-07-026713-8 "Are there any professional examinations available in the electronics and telecommunications engineering field? Where do I get the listings of these examinations, and how do I apply for them? Who is eligible to write such examinations?". Retrieved 28 May 2018. Rakesh K. Garg/Ashish Dixit/Pavan Yadav Basic Electronics, p. 1, Firewall Media, 2008 ISBN 978-81-318-0302-8 Sachin S. Sharma Power Electronics, p. ix, Firewall Media, 2008 ISBN 978-81-318-0350-9 Edward J. Rothwell/Michael J. Cloud Electromagnetics, CRC Press, 2001 ISBN 978-0-8493-1397-4 Joseph Edminister Schaum's Outlines Electromagnetics, McGraw Hill Professional, 1995 ISBN 978-0-07-021234-3 J. O. Bird Electrical Circuit Theory and Technology, pp. 372–443, Newness, 2007 ISBN 978-0-7506-8139-1 Alan K. Walton Network Analysis and Practice, Cambridge University Press, 1987 ISBN 978-0-521-31903-4 David K. Ferry/Jonathan P. Bird Electronic Materials and Devices, Academic Press, 2001 ISBN 978-0-12-254161-2 Jimmie J. Cathey Schaum's Outline of Theory and Problems of Electronic Devices and Circuits, McGraw Hill, 2002 ISBN 978-0-07-136270-2 Wai-Kai Chen Analog Circuits and Devices, CRC Press, 2003 ISBN 978-0-8493-1736-1 Ronald C. Emery Digital Circuits: Logic and Design, CRC Press, 1985 ISBN 978-0-8247-7397-7 Anant Agarwal/Jeffrey H. Lang Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann, 2005 ISBN 978-1-55860-735-4 Michael J. Roberts Signals and Systems, p. 1, McGraw–Hill Professional, 2003 ISBN 978-0-07-249942-1 Hwei Piao Hsu Schaum's Outline of Theory and Problems of Signals and Systems, p. 1, McGraw–Hill Professional, 1995 ISBN 978-0-07-030641-7 Gerald Luecke, Analog and Digital Circuits for Electronic Control System Applications, Newnes, 2005. ISBN 978-0-7506-7810-0. Joseph J. DiStefano, Allen R. Stubberud, and Ivan J. Williams, Schaum's Outline of Theory and Problems of Feedback and Control Systems, McGraw-Hill Professional, 1995. ISBN 978-0-07-017052-0. Shanmugam, Digital and Analog Communication Systems, Wiley-India, 2006. ISBN 978-81-265-0914-0. Hwei Pia Hsu, Schaum's Outline of Analog and Digital Communications, McGraw–Hill Professional, 2003. ISBN 978-0-07-140228-6. Homer L. Davidson, Troubleshooting and Repairing Consumer Electronics, p. 1, McGraw–Hill Professional, 2004. ISBN 978-0-07-142181-2. External links Category:Electronics at Wikipedia's sister projects Definitions from Wiktionary Media from Wikimedia Commons News from Wikinews Quotations from Wikiquote Texts from Wikisource Textbooks from Wikibooks Resources from Wikiversity Institute of Electrical and Electronics Engineers (IEEE) vte Engineering Civil ArchitecturalConstructionEnvironmentalEarthquakeGeotechnicalHydraulicMiningStructuralTransportation Nuvola apps kfig.svg Mechanical AcousticalAerospaceAutomotiveMarineRailwayThermal Electrical ComputerControlElectromechanicsElectronicsMicrowavesPowerRadio FrequencyTelecommunications Chemical BiochemicalBiologicalMolecularPetroleumProcessReaction Interdisciplinary AgriculturalAudioBiomedicalEngineering mathematicsEngineering mechanicsEngineering physicsEngineering scienceFireIndustrialInformationMaterials science CeramicsMetallurgyPolymerMechatronicsMilitaryNanotechnologyNuclearOpticalPhotonicsPrivacyRoboticsSanitarySecuritySoftwareSystems Glossaries EngineeringAerospace engineeringCivil engineeringElectrical and electronics engineeringMechanical engineeringStructural engineering List of engineering branchesCategory Category:EngineeringPortal Nuvola apps kcmsystem.svg Engineering portal Categories: Electrical engineeringElectronic engineeringComputer engineeringEngineering disciplines Navigation menu Not logged inTalkContributionsCreate accountLog inArticleTalkReadEditView historySearch Search Wikipedia Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store Interaction Help About Wikipedia Community portal Recent changes Contact page Tools What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page Print/export Create a book Download as PDF Printable version Languages العربية বাংলা Español Français Bahasa Indonesia Bahasa Melayu Português اردو 中文 25 more Edit links This page was last edited on 4 November 2019, at 19:27 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersStatisticsCookie statementMobile view ------------- HAY IMPACTO DEL CAPITAL HUMANO EN LA INNOVACION? -------------- ¿Hay impacto del capital humano



A : INGENIERO FRANK HATTON GUERRERO,

INMORTAL DEL DEPORTE DOMINICANO,

desde 1970, In Memoriam.

LA CALIDAD NO ES UN ACTO,

ES UN HABITO.

ARISTOTELES.

-------

EL PENSAR EN UN LOCUTOR PROFESIONAL,

MUSICAL, DEPORTIVO, HISTORICO,

EN CIENCIAS, EN TECNOLOGIAS, el dominicano

y la dominicana, BIEN INFORMADOS, no

PUEDE DEJAR DE RECORDAR, que para

HABLAR POR UN MICROFONO, en el

territorio DOMINICANO,

por la RADO DOMINICANA, como:

1, INSTRUMENTO MASIVO DE CIENCIAS:

DE CULTURA.

2. DE PAZ, DE INFORMACION, NO DE BASURA

SIENDO YA UNA CELEBRIDAD MUNDIAL:

COMO CIENTIFICO TICs...

1. EL INGENIERO ELECTRONICO

FRANK HATTON GUERRERO,

2. PESE A SER EL INVENTOR DE :

HIZ...

3. PESE A SER EL FUNDADOR DE

RADIO CLUB DOMINICANO, INC

Y SU PRIMER PRESIDENTE...

TUVO QUE ASISTIR, humildemente

COMO TODO EL MUNDO EN REPUBLICA

DOMINICANA;

1. A EXAMIARSE PARA SER :

LOCUTOR O LOCUTORA.

2. PARA HABLAR POR RADIO:

PROFESIONALMENTE...

-DIARIA O SEMANALMENTE-

2.1.INFORMADAMENTE,

2.2.DOMINICANAMENTE...

NINGUN TITULO UNIVERSITARIO

EN LA TIERRA, PROVEE LOS CONOCIMIENTOS

DE LA :

1.PROFESION DE LOCUTOR O LOCUTORA

-MUSICAL, DISC JOCKEY O PROGRAMADOR-

MUSICAL DE RADIO...

2.DE LOCUTOR O LOCUTORA :

DEPORTIVO.

3.DE LOCUTOR O LOCUTORA EN :

CIENCIAS HISTORICAS.

4.DE LOCUTOR O LOCUTORA,

EN ECONOMIA DIGITAL.

5,DE LOCUTOR O LOCUTORA:

EN NUEVAS TECNOLOGIAS &

CIENCIAS TICs.

6,DE LOCUTOR O LOCUTORA EN :

PAIDOLOGIA O EDUCACION INFANTIL...

7.DE LOCUTOR O LOCUTORA EN:

ANIMACION SOCIO-CULTURAL (ASC)

PARA :

CIENCIAS ANDRAGOGICAS O EDUCACION

DE PERSONAS ADULTAS...

8.DE LOCUTOR PARA LA PROMOCION DE

1. CIENCIAS DEL OCIO.

2. CIENCIAS DEL DEPORTE...

EL UNICO ORGANO & CONTROL DE

CALIDAD EN KAYZEN & TQM, que tiene

LA INDUSTRIA RADIOFONICA, EN SUS

METRICAS,

1. ESTETICAS RADIOFONICAS.

2. SEMIOLOGIAS RADIOFONICAS.

3. PRECISION INFORMATIVA, en esa promocion:

ES LA BARRERA DE ACCESO: INICIAL,

de la COMISION NACIONAL DE ESTECTACULOS

PUBLICOS & RADIOFONIA (CNEPR):

LOS EXAMENES, PARA INGRESAR A LA

PROFESION DE LOCUTOR...

1. ESOS CARNETS... no se venden...

2. ESOS CARNETS, no se regalan a

PELAFUSTANES...

PORQUE SON CON UN JURADO:

EXAMINADOR...

----------
1981.

https://en.wikipedia.org/wiki/Electronic_engineering

FALLECE EN SANTO DOMINGO DE

GUZMAN EL CIENTIFICO DOMINICANO,

ING. ELECTRONICO, FRANK HATTON

GUERRERO.

Las personas que habian seguido su carrera,

SUS APORTES DE TODO TIPO:

1. A LA CIENCIA DE LA RADIODIFUSION

DOMINICANA.

2. AL SHOW BUSNESS DOMINICANO,

3. A LA NARRACION DEPORTIVA RADIAL

DOMINICANA.

4. A LA INVENCION DE UNA EMISORA:

COMPLETA -DESDE SU IMAGINACION- en

el caso concreto de la RADIOESTACION

COMERCIAL, PRIMERA EN EL PAIS:

HIZ.

5.A LA PRACTICA DEPORTIVA :

PROFESIONAL Y AFICIONADA,

Desde su equipo capitaleno TIGRES

DEL LICEY, donde jugo como :

short -stop.

COMO A LOS OCIOS INSTRUCCIONALES

(Doumazedier, 1968) FOMENTANDO EN

TODO SU TIEMPO LIBRE, la PRACTICA

JUVENIL E INFANTIL, aficionada del :

1. GOLF.

2. EL FUTBOL,

3. EL BALONCESTO.

EN SU VIDA INTIMA,PRIVADA, FAMILIAR,

COMO EN SU VIDA COMO : EMPLEADO

PUBLICO, COMO FUNCIONARIO PUBLICO,

en la calidad de:

PRIMER DIRECTOR DE DEPORTES DE LA

NACION & DE LA REPUBLICA DOMINICANA

(1938) BAJO LA DIVISA:

CUERPO SANO, MENTE, SANA...

LE MONTAN UNA GUARDIA DE HONOR

A SU FERETRO...

LOS DIRECTIVOS DE RADIO CLUB

DOMINICANO, INC. entidad que ayuda a

fundar desde los anos 20s, DEL PASADO

SIGLO XX, y que llego a PRESIDIR EN EL

ANO 1926.

CONVERGEN ANTE ESA ATAUD, LOS

PROFESIONALES DOMINICANOS, conscientes

DEL VALOR PARA UNA ECONOMIA, PARA

UNA NACION, DE HABER PRODUCIDO:

EL PRIMER INGENIERO ELECTRONICO,

en un pais:

1. NO electrificado.

2. NO urbanizado.

3. CARENTE DE ELECTRODOMESTICOS

DE MANUFACTURA NACIONAL DOMINICANA

O IMPORTADA EN EL MERCADO DOMINICANO

DE LAS:

IMPORTACIONES DE EQUIPO ELECTRICO

O ELECTRONICO, dado que CARECIAMOS

DE LA :

ENERGIA QUE NOS MUEVE:

LA ELECTRICIDAD...

ING. ELECTRONICO FRANK HATTON

GUERRERO, es una fuerza inspiradora

al trabajo y al estudio para todos los ninos

y ninas pobres, que ahora estan cursando

EL KINDERGARTEN, en Africa, en Asia,

en el Caribe, en Oceania, PARA QUE NO

DESMAYEN EN SUS SUENOS DE LLEGAR

A SER :

DUENOS DE UNA MYPIME...

AUNQUE LA MISMA SOLO TENGA UN

SOLO EMPLEADO:

UD. MISMO...

https://en.wikipedia.org/wiki/Electronic_engineering

------------
CCIAV, CC4AVE.

Talents, Criticism, Friendship!

Salut, Polis, Ecumene!

(1959-2019)

---------

ELECTRONIC ENGINEERING.

https://en.wikipedia.org/wiki/Electronic_engineering

--------------
Electronic engineering

From Wikipedia, the free encyclopedia

Electronic engineering

 (also called electronics and

COMMUNICATIONS ENGINEERING

communications engineering)

IS AN ELECTRICALENGINEERING DISCIPLINE

 is an electrical engineering discipline which

UTILIZES NONLINEAR AND ACTIVE ELECTRICAL

COMPONENTS

 utilizes nonlinear and active electrical components (such as semiconductor devices, especially transistors, diodes and integrated circuits)

TO DESING ELECTRONIC

1. CIRCUITS.

2. DEVICES.

3. VLSI DEVICES

4. AND THEIR SYSTEMS...

to design electronic circuits, devices, VLSI devices

 and their systems.

THE DISCIPLINE TYPICALLY ALSO : DESIGN

The discipline typically also designs

PASSIVE ELECTRICALCOMPONENTS

 passive electrical components,

USUALLY BASED ON PRINTED CIRCUITS

BOARDS.

usually based on printed circuit boards.

ELECTRONICS IS A SUB-FIELD

WITHIN THE WIDER ELECTRICAL

Electronics is a subfield within the wider

ELECTRICAL ENGINEERING ACADEMIC

SUBJECTS

electrical engineering academic subject

BUT DENOTES A BROAD ENGINEERING FIELD

but denotes a broad engineering field

THAT COVER SUB-FIELDS AS:

1. ANALOG ELECTRONICS.

2. DIGITAL ELECTRONICS.

3. CONSUMER ELECTRONICS.

1.EMBEDED SYSTEMS.

2. POWER ELECTRONICS.

that covers subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics.

ELECTRONICS ENGINEERING DEALS:

1. IMPLEMENTATION OF APPLICATIONS

2. PRINCIPLES.

3.ALGORTHMS.

4. DEVELOPED WITHIN:

 MANY RELATIVE FIELDS

lectronics engineering deals with implementation of applications, principles and algorithms developed within many related fields,

FOR EXAMPLE:

1. SOLID-STATE PHYSICS.

2. RADIO ENGINEERING.

3. TELECOMMUNICATIONS.

4. CONTROL SYSTEMS.

5. SIGNAL PROCESSING.

6. SYSTEM ENGENEERING.

7.COMPUTER ENGENEERING.

8. INSTRUMENTATION ENGENEERING.

9. ROBOTICS.

10. ELECTRIC POWER CONTROL

 for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others.

THE INSTITUTE OF ELECTRICAL AND

ELECTRONICS ENGINEERS (IEEE)

The Institute of Electrical and Electronics Engineers (IEEE)

IS ONE OF THE MOST IMPORTANT

AND INFLUENTIAL ORGANIZATIONS

CIis one of the most important and influential organizations for electronics engineers based in the US.

ON AND INTERNATIONAL LEVEL...

THE INTERNATIONAL ELECTROTECHNICAL

COMMISION (IEC).

On an international level, the International Electrotechnical Commission (IEC)

PREPARES STANDARS FOR ELECTRONIC

ENGENEERING

prepares standards for electronic engineering,

1.DEVELOPED THROUGH CONSENSUS

developed through consensus

2. AND THANKS TO THE WORK

2.1. OF 20,000 EXPERTS

 and thanks to the work of 20,000 experts

2.2. FROM 172 COUNTRIES WORLDWIDE.

 from 172 countries worldwide.

Contents
1 Relationship to electrical engineering
2 History
3 Electronics
4 Subfields
5 Education and training
5.1 Electromagnetics
5.2 Network analysis
5.3 Electronic devices and circuits
5.4 Signals and systems
5.5 Control systems
5.6 Communications
6 Professional practice
7 Project engineering
8 See also
9 References
10 External links
Relationship to electrical engineering
Electronics is a subfield within the wider electrical engineering academic subject. An academic degree with a major in electronics engineering can be acquired from some universities, while other universities use electrical engineering as the subject. The term electrical engineer is still used in the academic world to include electronic engineers.[1] However, some people consider the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others consider that power is just one subset of electrical engineering, as well as 'electrical distribution engineering'. The term 'power engineering' is used as a descriptor in that industry. Again, in recent years there has been a growth of new separate-entry degree courses such as 'systems engineering' and 'communication systems engineering', often followed by academic departments of similar name, which are typically not considered as subfields of electronics engineering but of electrical engineering.[2][3]

History
Main article: History of electronic engineering
Electronic engineering as a profession sprang from technological improvements in the telegraph industry in the late 19th century and the radio and the telephone industries in the early 20th century. People were attracted to radio by the technical fascination it inspired, first in receiving and then in transmitting. Many who went into broadcasting in the 1920s were only 'amateurs' in the period before World War I.[4]

To a large extent, the modern discipline of electronic engineering was born out of telephone, radio, and television equipment development and the large amount of electronic systems development during World War II of radar, sonar, communication systems, and advanced munitions and weapon systems. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge.[5]

The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947.[6] The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was later invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959.[7][8][9] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[10] The MOSFET revolutionized the electronics industry,[11][12] becoming the most widely used electronic device in the world.[8][13][14] The MOSFET is the basic element in most modern electronic equipment.[15][16]

Electronics
Main article: Electronics
In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.

In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.

For systems of intermediate complexity, engineers may use VHDL modeling for programmable logic devices and FPGAs.

Integrated circuits, FPGAs and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.[17]

Subfields

This section duplicates the scope of other sections, specifically, Electrical engineering#Subfields. (February 2019)
Electronic engineering has many subfields. This section describes some of the most popular subfields in electronic engineering; although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields.

Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information.

For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals.

Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space.

Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer.

Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise.

Electromagnetics is an in-depth study about the signals that are transmitted in a channel (Wired or Wireless). This includes Basics of Electromagnetic waves, Transmission Lines and Waveguides, Antennas, its types and applications with Radio-Frequency (RF) and Microwaves. Its applications are seen widely in other sub-fields like Telecommunication, Control and Instrumentation Engineering.

Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation.

Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control, the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback.

Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation.

The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier–Seebeck effect to measure the temperature difference between two points.

Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering.

Computer engineering deals with the design of computers and computer systems. This may involve the design of new computer hardware, the design of PDAs or the use of computers to control an industrial plant. Development of embedded systems—systems made for specific tasks (e.g., mobile phones)—is also included in this field. This field includes the micro controller and its applications. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline.

VLSI design engineering VLSI stands for very large scale integration. It deals with fabrication of ICs and various electronic components.

Source:

https://en.wikipedia.org/wiki/Electronic_engineering

Yoe F. Santos/CCIAV.

CCIAV, CC4AVE.

Talents, Criticism, Friendship!

Salut, Polis, Ecumene!

(1959-2019)

----------
AUNQUE YA, ERA UNA LEYENDA ENTRE

LOS CIENTIFICOS & LOS ESPECIALISTAS

DOMINICANOS, en el ano 1938:

COMO INVENTOR, COMO GERENTE,

COMO INGENIERO ELECTRONICO...

HUMILDEMENTE...

1. FUE A TOMAR SU EXAMEN, DE : LOCUCION.

2. APROBO LOS EXAMENES DE: LOCUCION.

LA UNICA MANERA DE INGRESAR A ESTA

PROFESION Y PODER HABLAR POR UN:

MICROFONO EN LA REPUBLICA DOMINICANA.

TENER:

CARNET DE LOCUTOR.

CARNET DE LOCUTOR, QUE NO SE REGALA...

CARNET DE LOCUTOR, QUE NO SE VENDE...

CARNET DE LOCUTOR, QUE NO SE TRAFICA...

Cuando se SOMETIO, DOCIL, CIVILIZADAMENTE

A LOS EXAMENES, con que EL ESTADO

DOMINICANO, EL GOBIERNO DOMINICANO,

LA ADMINISTRACION PUBLICA DOMINICANA

1. GARANTIZA LA SALUD, DE TODOS Y TODAS

LOS RADIOYENTES DOMINICANOS.

2. CON CALIDAD DE INFORMACION, NO:

DESINFORMACION...

3. ENTONCES, AUNQUE TOMO LOS

EXAMENES, COMO :

ASPIRANTE A LOCUTOR DOMINICANO,

en 1938...

4. NO ES HASTA EL ANO : 1939 que el

GOBIERNO DOMINICANO, mediante sus

ORGANOS CIENTIFICOS DE DEPURACION:

LE OTORGA EL CARNET DE LOCUTOR...

QUE ES UN LOCUTOR O  LOCUTURA?

1. UN EDUCADOR MASIVO.

2. ALGUIEN QUE HA TENIDO OPORTUNIDADES:

EDUCATIVAS, que la mayoria de la poblacion,

NUNCA TUVO,o jamas tendra...

2.1. ENTONCES ESA PERSONA, TIENE:

NUEVAS IDEAS QUE APORTAR, para que

EL PAIS, FUNCIONE, MEJOR PARA TODOS

Y PARA TODAS LOS DOMINICANOS...

Para que el PAIS: Se Institucionalice.

Para que el pais, SE MODERNICE...

Para que el PAIS, se INDUSTRIALICE,

Para que el pais EXPLORE NUEVAS

FUENTES DE EMPLEOS PRODUCTIVOS.

Para que el pais, MEJORE EN EL ACCESO

A LA SALUD, CIENTIFICA, no a la brujeria,

ni a las botellas, limpia-vientres...

SINO A:

1. LA GINECO-OBSTETRICIA CIENTIFICA.

2. A LA PEDIATRIA, CIENTIFICA.

3. A LAS CIENCIAS DEL OCIO, CIENTIFICAS.

4. A LAS CIENCIAS DEL DEPORTE, CIENTIFICAS.

5. A LAS CIENCIAS DE LA GERENCIA O DE LA

GESTION, CIENTIFICAS.

6. AL COMERCIO INTERNACIONAL O MUNDIAL

CIENTIFICO.

7. A LA FAMILIA HETEROSEXUAL, CRIADA

CON TODOS LOS ESTANDARES DE EXCELENCIA

EN HOGARES, POBRES O RICOS, DOMINICANOS.

8 A LA ATENCION PRIMARIA EN SALUD,

CIENTIFICA.

9. AL REGIMEN SUBSIDIADO DE SALUD,

EN SENASA, como ha ocurrido con los :

3 millones 700 PACIENTES DOMINICANOS,

en los ultimos 7 anos (2012-2019)...

HOY ES EL DIA DOMINICANO DEL MERENGUE,

PERO UNA ECONOMIA PROSPERA &

EXPORTADORA COMO LA DOMINICANA,

NO SE CONSTRUYE:

BAILANDO MEREGUE...

SINO TRABAJANDO COMO DIOS MANDA!

8 HORAS DIARIAS, EN UN PUESTO DE:

TRABAJO PRODUCTIVO DE RIQUEZA,

EN LAS INDUSTRIAS DOMINICANAS...

EN LA MANUFACTURA DOMINICANA,

EN LAS CARRETERAS DOMINICANAS,

EN LAS TELECOMUNICACIONES DOMINICANAS,

EN LA RADIO DOMINICANA,

EN LAS OFICINAS DOMINICANAS,

EN LA TELEVISION DOMINICANA,

EN EL CINE DOMINICANO,

EN EL TALLER DE MECANICA DOMINICANO,

EN EL COLMADO Y EL COLMADON DOMINICANOS

EN EL SUPERMERCADO DOMINICANO,

EN EL DELIVERY DOMINICANO,

EN EL MOTOCONCHO DOMINICANO,

EN EL TAXI DOMINICANO,

EN EL AUTOBUS DOMINICANO,

EN LOS MUELLES DOMINICANOS,

EN LOS AEROPUERTOS DOMINICANOS...

EN LOS 4,000 NUEVOS KILOMETROS DE

CARRETERAS DOMINICANOS, PARA;

EL EJERCICIO & LA PRACTICA DE LAS

CIENCIAS LOGISTICAS DOMINICANAS...

Yoe F. Santos/CCIAV.

CCIAV, CC4AVE.

Talents, Criticism, Friendship!

Salut, Polis, Ecumene!

(1959-2019)

---------

ELECTRONIC ENGINEERING.

--------------
Electronic engineering

From Wikipedia, the free encyclopedia

Electronic engineering

 (also called electronics and

COMMUNICATIONS ENGINEERING

communications engineering)

IS AN ELECTRICALENGINEERING DISCIPLINE

 is an electrical engineering discipline which

UTILIZES NONLINEAR AND ACTIVE ELECTRICAL

COMPONENTS

 utilizes nonlinear and active electrical components (such as semiconductor devices, especially transistors, diodes and integrated circuits)

TO DESING ELECTRONIC

1. CIRCUITS.

2. DEVICES.

3. VLSI DEVICES

4. AND THEIR SYSTEMS...

to design electronic circuits, devices, VLSI devices

 and their systems.

THE DISCIPLINE TYPICALLY ALSO : DESIGN

The discipline typically also designs

PASSIVE ELECTRICALCOMPONENTS

 passive electrical components,

USUALLY BASED ON PRINTED CIRCUITS

BOARDS.

usually based on printed circuit boards.

ELECTRONICS IS A SUB-FIELD

WITHIN THE WIDER ELECTRICAL

Electronics is a subfield within the wider

ELECTRICAL ENGINEERING ACADEMIC

SUBJECTS

electrical engineering academic subject

BUT DENOTES A BROAD ENGINEERING FIELD

but denotes a broad engineering field

THAT COVER SUB-FIELDS AS:

1. ANALOG ELECTRONICS.

2. DIGITAL ELECTRONICS.

3. CONSUMER ELECTRONICS.

1.EMBEDED SYSTEMS.

2. POWER ELECTRONICS.

that covers subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics.

ELECTRONICS ENGINEERING DEALS:

1. IMPLEMENTATION OF APPLICATIONS

2. PRINCIPLES.

3.ALGORTHMS.

4. DEVELOPED WITHIN:

 MANY RELATIVE FIELDS

lectronics engineering deals with implementation of applications, principles and algorithms developed within many related fields,

FOR EXAMPLE:

1. SOLID-STATE PHYSICS.

2. RADIO ENGINEERING.

3. TELECOMMUNICATIONS.

4. CONTROL SYSTEMS.

5. SIGNAL PROCESSING.

6. SYSTEM ENGENEERING.

7.COMPUTER ENGENEERING.

8. INSTRUMENTATION ENGENEERING.

9. ROBOTICS.

10. ELECTRIC POWER CONTROL

 for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others.

THE INSTITUTE OF ELECTRICAL AND

ELECTRONICS ENGINEERS (IEEE)

The Institute of Electrical and Electronics Engineers (IEEE)

IS ONE OF THE MOST IMPORTANT

AND INFLUENTIAL ORGANIZATIONS

CIis one of the most important and influential organizations for electronics engineers based in the US.

ON AND INTERNATIONAL LEVEL...

THE INTERNATIONAL ELECTROTECHNICAL

COMMISION (IEC).

On an international level, the International Electrotechnical Commission (IEC)

PREPARES STANDARS FOR ELECTRONIC

ENGENEERING

prepares standards for electronic engineering,

1.DEVELOPED THROUGH CONSENSUS

developed through consensus

2. AND THANKS TO THE WORK

2.1. OF 20,000 EXPERTS

 and thanks to the work of 20,000 experts

2.2. FROM 172 COUNTRIES WORLDWIDE.

 from 172 countries worldwide.

Contents
1 Relationship to electrical engineering
2 History
3 Electronics
4 Subfields
5 Education and training
5.1 Electromagnetics
5.2 Network analysis
5.3 Electronic devices and circuits
5.4 Signals and systems
5.5 Control systems
5.6 Communications
6 Professional practice
7 Project engineering
8 See also
9 References
10 External links
Relationship to electrical engineering
Electronics is a subfield within the wider electrical engineering academic subject. An academic degree with a major in electronics engineering can be acquired from some universities, while other universities use electrical engineering as the subject. The term electrical engineer is still used in the academic world to include electronic engineers.[1] However, some people consider the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others consider that power is just one subset of electrical engineering, as well as 'electrical distribution engineering'. The term 'power engineering' is used as a descriptor in that industry. Again, in recent years there has been a growth of new separate-entry degree courses such as 'systems engineering' and 'communication systems engineering', often followed by academic departments of similar name, which are typically not considered as subfields of electronics engineering but of electrical engineering.[2][3]

History
Main article: History of electronic engineering
Electronic engineering as a profession sprang from technological improvements in the telegraph industry in the late 19th century and the radio and the telephone industries in the early 20th century. People were attracted to radio by the technical fascination it inspired, first in receiving and then in transmitting. Many who went into broadcasting in the 1920s were only 'amateurs' in the period before World War I.[4]

To a large extent, the modern discipline of electronic engineering was born out of telephone, radio, and television equipment development and the large amount of electronic systems development during World War II of radar, sonar, communication systems, and advanced munitions and weapon systems. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge.[5]

The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947.[6] The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was later invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959.[7][8][9] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[10] The MOSFET revolutionized the electronics industry,[11][12] becoming the most widely used electronic device in the world.[8][13][14] The MOSFET is the basic element in most modern electronic equipment.[15][16]

Electronics
Main article: Electronics
In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.

In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.

For systems of intermediate complexity, engineers may use VHDL modeling for programmable logic devices and FPGAs.

Integrated circuits, FPGAs and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.[17]

Subfields

This section duplicates the scope of other sections, specifically, Electrical engineering#Subfields. (February 2019)
Electronic engineering has many subfields. This section describes some of the most popular subfields in electronic engineering; although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields.

Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information.

For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals.

Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space.

Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer.

Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise.

Electromagnetics is an in-depth study about the signals that are transmitted in a channel (Wired or Wireless). This includes Basics of Electromagnetic waves, Transmission Lines and Waveguides, Antennas, its types and applications with Radio-Frequency (RF) and Microwaves. Its applications are seen widely in other sub-fields like Telecommunication, Control and Instrumentation Engineering.

Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation.

Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control, the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback.

Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation.

The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier–Seebeck effect to measure the temperature difference between two points.

Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering.

Computer engineering deals with the design of computers and computer systems. This may involve the design of new computer hardware, the design of PDAs or the use of computers to control an industrial plant. Development of embedded systems—systems made for specific tasks (e.g., mobile phones)—is also included in this field. This field includes the micro controller and its applications. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline.

VLSI design engineering VLSI stands for very large scale integration. It deals with fabrication of ICs and various electronic components.

Education and training
Main article: Education and training of electrical and electronics engineers
Electronics engineers typically possess an academic degree with a major in electronic engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Applied Science, or Bachelor of Technology depending upon the university. Many UK universities also offer Master of Engineering (MEng) degrees at the graduate level.

Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science, Doctor of Philosophy in Engineering, or an Engineering Doctorate. The master's degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The master's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia.

In most countries, a bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. Certification allows engineers to legally sign off on plans for projects affecting public safety.[18] After completing a certified degree program, the engineer must satisfy a range of requirements, including work experience requirements, before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada, and South Africa), Chartered Engineer or Incorporated Engineer (in the United Kingdom, Ireland, India, and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (in much of the European Union).

A degree in electronics generally includes units covering physics, chemistry, mathematics, project management and specific topics in electrical engineering. Initially, such topics cover most, if not all, of the subfields of electronic engineering. Students then choose to specialize in one or more subfields towards the end of the degree.

Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design and simulation software programs when designing electronic systems. Although most electronic engineers will understand basic circuit theory, the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI but are largely irrelevant to engineers working with embedded systems.

Apart from electromagnetics and network theory, other items in the syllabus are particular to electronics engineering course. Electrical engineering courses have other specialisms such as machines, power generation and distribution. This list does not include the extensive engineering mathematics curriculum that is a prerequisite to a degree.[19][20]

Electromagnetics
Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Antennas: Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem, antenna gain.[21][22]

Network analysis
Network graphs: matrices associated with graphs; incidence, fundamental cut set, and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation.[23] Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.[24]

Electronic devices and circuits
Electronic devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-i-n and avalanche photo diode, LASERs. Device technology: integrated circuit fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.[25][26]

Analog circuits: Equivalent circuits (large and small-signal) of diodes, BJT, JFETs, and MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.[27]

Digital circuits: Boolean functions (NOT, AND, OR, XOR,...). Logic gates digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor 8086: architecture, programming, memory and I/O interfacing.[28][29]

Signals and systems
Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros frequency response, group delay, phase delay. Signal transmission through LTI systems. Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density, function analogy between vectors & functions.[30][31]

Control systems
Basic control system components; block diagrammatic description, reduction of block diagrams — Mason's rule. Open loop and closed loop (negative unity feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Analysis of steady-state disturbance rejection and noise sensitivity.

Tools and techniques for LTI control system analysis and design: root loci, Routh-Hurwitz stability criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative controller (PID). Discretization of continuous time systems using zero-order hold and ADCs for digital controller implementation. Limitations of digital controllers: aliasing. State variable representation and solution of state equation of LTI control systems. Linearization of Nonlinear dynamical systems with state-space realizations in both frequency and time domains. Fundamental concepts of controllability and observability for MIMO LTI systems. State space realizations: observable and controllable canonical form. Ackermann's formula for state-feedback pole placement. Design of full order and reduced order estimators.[32][33]

Communications
Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne noise conditions.

Digital communication systems: pulse-code modulation (PCM), differential pulse-code modulation (DPCM), delta modulation (DM), digital modulation – amplitude, phase- and frequency-shift keying schemes (ASK, PSK, FSK), matched-filter receivers, bandwidth consideration and probability of error calculations for these schemes, GSM, TDMA.[34][35]

Professional practice
Professional bodies of note for electrical engineers include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Electrical Engineers (IEE) (now renamed the Institution of Engineering and Technology or IET). Members of the Institution of Engineering and Technology (MIET) are recognized professionally in Europe, as Electrical and computer (technology) engineers. The IEEE claims to produce 30 percent of the world's literature in electrical/electronic engineering, has over 430,000 members, and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each year. SMIEEE is a recognised professional designation in the United States.

Project engineering
For most engineers not involved at the cutting edge of system design and development, technical work accounts for only a fraction of the work they do. A lot of time is also spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason, project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.

The workplaces of electronics engineers are just as varied as the types of work they do. Electronics engineers may be found in the pristine laboratory environment of a fabrication plant, the offices of a consulting firm or in a research laboratory. During their working life, electronics engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers.

Obsolescence of technical skills is a serious concern for electronics engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency. And these are mostly used in the field of consumer electronics products.[36]

See also
icon Electronics portal
Electrical engineering technology
Glossary of electrical and electronics engineering
Index of electrical engineering articles
Information engineering
List of electrical engineers
Timeline of electrical and electronic engineering
References
 Allan R. Hambley Electrical Engineering, pp. 3, 441, Prentice Hall, 2004 ISBN 978-0-13-147046-0
 Principles of Electrical Engineering. Books.google.com. Retrieved 29 October 2012.
 Anthony J. Pansini Electrical Distribution Engineering, p. xiv, The Fairmont Press Inc., 2006 ISBN 978-0-88173-546-8
 Erik Barnouw A Tower in Babel, p. 28, Oxford University Press US, 1966 ISBN 978-0-19-500474-8
 Radio Engineering Principles. Books.google.com. Retrieved 29 October 2012.
 "1947: Invention of the Point-Contact Transistor". Computer History Museum. Retrieved 10 August 2019.
 "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
 "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
 "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Retrieved 21 July 2019.
 Cite error: The named reference Moskowitz was invoked but never defined (see the help page).
 Chan, Yi-Jen (1992). Studies of InAIAs/InGaAs and GaInP/GaAs heterostructure FET's for high speed applications. University of Michigan. p. 1. The Si MOSFET has revolutionized the electronics industry and as a result impacts our daily lives in almost every conceivable way.
 Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal-oxide-semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers.
 Golio, Mike; Golio, Janet (2018). RF and Microwave Passive and Active Technologies. CRC Press. pp. 18–2. ISBN 9781420006728.
 "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019.
 Daniels, Lee A. (28 May 1992). "Dr. Dawon Kahng, 61, Inventor In Field of Solid-State Electronics". The New York Times. Retrieved 1 April 2017.
 Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406.
 Charles A. Harper High Performance Printed Circuit Boards, pp. xiii-xiv, McGraw-Hill Professional, 2000 ISBN 978-0-07-026713-8
 "Are there any professional examinations available in the electronics and telecommunications engineering field? Where do I get the listings of these examinations, and how do I apply for them? Who is eligible to write such examinations?". Retrieved 28 May 2018.
 Rakesh K. Garg/Ashish Dixit/Pavan Yadav Basic Electronics, p. 1, Firewall Media, 2008 ISBN 978-81-318-0302-8
 Sachin S. Sharma Power Electronics, p. ix, Firewall Media, 2008 ISBN 978-81-318-0350-9
 Edward J. Rothwell/Michael J. Cloud Electromagnetics, CRC Press, 2001 ISBN 978-0-8493-1397-4
 Joseph Edminister Schaum's Outlines Electromagnetics, McGraw Hill Professional, 1995 ISBN 978-0-07-021234-3
 J. O. Bird Electrical Circuit Theory and Technology, pp. 372–443, Newness, 2007 ISBN 978-0-7506-8139-1
 Alan K. Walton Network Analysis and Practice, Cambridge University Press, 1987 ISBN 978-0-521-31903-4
 David K. Ferry/Jonathan P. Bird Electronic Materials and Devices, Academic Press, 2001 ISBN 978-0-12-254161-2
 Jimmie J. Cathey Schaum's Outline of Theory and Problems of Electronic Devices and Circuits, McGraw Hill, 2002 ISBN 978-0-07-136270-2
 Wai-Kai Chen Analog Circuits and Devices, CRC Press, 2003 ISBN 978-0-8493-1736-1
 Ronald C. Emery Digital Circuits: Logic and Design, CRC Press, 1985 ISBN 978-0-8247-7397-7
 Anant Agarwal/Jeffrey H. Lang Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann, 2005 ISBN 978-1-55860-735-4
 Michael J. Roberts Signals and Systems, p. 1, McGraw–Hill Professional, 2003 ISBN 978-0-07-249942-1
 Hwei Piao Hsu Schaum's Outline of Theory and Problems of Signals and Systems, p. 1, McGraw–Hill Professional, 1995 ISBN 978-0-07-030641-7
 Gerald Luecke, Analog and Digital Circuits for Electronic Control System Applications, Newnes, 2005. ISBN 978-0-7506-7810-0.
 Joseph J. DiStefano, Allen R. Stubberud, and Ivan J. Williams, Schaum's Outline of Theory and Problems of Feedback and Control Systems, McGraw-Hill Professional, 1995. ISBN 978-0-07-017052-0.
 Shanmugam, Digital and Analog Communication Systems, Wiley-India, 2006. ISBN 978-81-265-0914-0.
 Hwei Pia Hsu, Schaum's Outline of Analog and Digital Communications, McGraw–Hill Professional, 2003. ISBN 978-0-07-140228-6.
 Homer L. Davidson, Troubleshooting and Repairing Consumer Electronics, p. 1, McGraw–Hill Professional, 2004. ISBN 978-0-07-142181-2.
External links
Category:Electronics
at Wikipedia's sister projects
Definitions from Wiktionary
Media from Wikimedia Commons
News from Wikinews
Quotations from Wikiquote
Texts from Wikisource
Textbooks from Wikibooks
Resources from Wikiversity
Institute of Electrical and Electronics Engineers (IEEE)
vte
Engineering
Civil
ArchitecturalConstructionEnvironmentalEarthquakeGeotechnicalHydraulicMiningStructuralTransportation
Nuvola apps kfig.svg
Mechanical
AcousticalAerospaceAutomotiveMarineRailwayThermal
Electrical
ComputerControlElectromechanicsElectronicsMicrowavesPowerRadio FrequencyTelecommunications
Chemical
BiochemicalBiologicalMolecularPetroleumProcessReaction
Interdisciplinary
AgriculturalAudioBiomedicalEngineering mathematicsEngineering mechanicsEngineering physicsEngineering scienceFireIndustrialInformationMaterials science CeramicsMetallurgyPolymerMechatronicsMilitaryNanotechnologyNuclearOpticalPhotonicsPrivacyRoboticsSanitarySecuritySoftwareSystems
Glossaries
EngineeringAerospace engineeringCivil engineeringElectrical and electronics engineeringMechanical engineeringStructural engineering
List of engineering branchesCategory Category:EngineeringPortal Nuvola apps kcmsystem.svg Engineering portal
Categories: Electrical engineeringElectronic engineeringComputer engineeringEngineering disciplines
Navigation menu
Not logged inTalkContributionsCreate accountLog inArticleTalkReadEditView historySearch
Search Wikipedia
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page
Print/export
Create a book
Download as PDF
Printable version

Languages
العربية
বাংলা
Español
Français
Bahasa Indonesia
Bahasa Melayu
Português
اردو
中文
25 more
Edit links
This page was last edited on 4 November 2019, at 19:27 (UTC).
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersStatisticsCookie statementMobile view
-------------

HAY IMPACTO DEL CAPITAL HUMANO

EN LA INNOVACION?

--------------
¿Hay impacto del capital

humano

No comments:

Post a Comment